Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T21:52:29.987Z Has data issue: false hasContentIssue false

Mechanical Properties of Ultrananocrystalline Diamond Thin Films for MEMS Applications

Published online by Cambridge University Press:  11 February 2011

H.D. Espinosa
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208–3111, USA
B. Peng
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208–3111, USA
K.-H. Kim
Affiliation:
Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208–3111, USA
B.C. Prorok
Affiliation:
Materials Research and Education Center, Auburn University, Auburn, AL 36849–5341, USA
N. Moldovan
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
X.C. Xiao
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
J.E. Gerbi
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
J. Birrell
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
O. Auciello
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
J.A. Carlisle
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
D.M. Gruen
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
D.C. Mancini
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
Get access

Abstract

Microcantilever deflection and the membrane deflection experiment (MDE) were used to examine the elastic and fracture properties of ultrananocrystalline diamond (UNCD) thin films in relation to their application to microelectromechanical systems (MEMS). Freestanding microcantilevers and membranes were fabricated using standard MEMS fabrication techniques adapted to our UNCD film technology. Elastic moduli measured by both methods described above are in agreement, with the values being in the range 930 and 970 GPa with both techniques showing good reproducibility. The MDE test showed fracture strength to vary from 3.95 to 5.03 GPa when seeding was performed with ultrasonic agitation of nanosized particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gruen, D.M., Annu. Rev. Mater. Sci. 29, 211 (1999).Google Scholar
2. Gruen, D.M., Liu, S., Krauss, A.R., Luo, J., and Pan, X., Appl. Phys. Lett. 64, 1502 (1994).Google Scholar
3. Gruen, D.M., Liu, S., Krauss, A.R., and Pan, X., J. Appl. Phys. 75, 1758 (1994).Google Scholar
4. Bhattacharyya, B., Auciello, O., Birrell, J., Carlisle, J.A., Curtiss, L.A., Goyette, A.N., Gruen, D.M., Krauss, A.R., Sumant, A., and Zapol, P., Appl. Phys. Lett. 79, 1441 (2001).Google Scholar
5. Sumant, A.V., Auciello, O., Krauss, A.R., Gruen, D.M., Ersoy, D., Stach, E., Moldovan, N., Mancini, D., Busmann, H.G., and Meyer, E.M., (2000), Mat. Res. Soc. Symp. Proc., 657 (2000).Google Scholar
6. Erdemir, A., Fenske, G.R., Krauss, A.R., Gruen, D.M., McCauley, T., and Csencsits, R.T., Surf. Coat. Technol. 120–121, 565 (1999).Google Scholar
7. Krauss, A.R., Auciello, O., Ding, M.Q., Gruen, D.M., Huang, Y., Zhirnov, V.V., Givargizov, E.I., Breskin, A., Chechen, R., Shefer, E., Konov, V., Pimenov, S., Karabutov, A., Rakhimov, A., and Suetin, N., J. Appl. Phys. 89, 2958 (1999).Google Scholar
8. Auciello, O., Krauss, A.R., Gruen, D.M., Busmann, H.G., Meyer, E.M., Tucek, J., Sumant, A., Moldovan, N., Mancini, D., and Gardos, M.N., Mater. Res. Soc. Symp. Proc. 605, 78 (2000).Google Scholar
9. Krauss, A.R., Auciello, O., Gruen, D.M., Jayatissa, A., Sumant, A., Tucek, J., Mancini, D., Moldovan, N., Erdemir, A., Ersoy, D., Gardos, M.N., Busmann, H.G., Meyer, E.M., and Ding, M.Q., Diam. Relat. Mater. 10, 1952 (2001).Google Scholar
10. Moldovan, N., Auciello, A., Sumant, A., Carlisle, J.A., Divan, R., Gruen, D.M., Krauss, A.R., Mancini, D.C., Jayatissa, A., and Tucek, J., Proc. of SPIE 4557, 288 (2001).Google Scholar
11. Espinosa, H.D., Prorok, B.C., and Fischer, M., J. Mech. Phys. Sol. 51, 67 (2003).Google Scholar
12. Burenkov, Y.A. and Nikanorov, S.P, Sov. Phys.-Solid State 16, 963 (1974).Google Scholar
13. Peterson, K.E., Proc. IEEE 70, 5 (1982).Google Scholar
14. Sharpe, W.N. Jr, Jackson, K., Coles, G. and LaVan, D.A., ASME Symp. On MEMS 2 (2000).Google Scholar
15. Coles, G., Sharpe, W.N. Jr, and Edwards, R.L., Proc. of MEMS: Soc. Exp. Mech., 1 (2001).Google Scholar
16. Kawaoka, H., Adachi, T., Sekino, T., Gao, L., and Niihara, K., J. Mater. Res. 16 (2001).Google Scholar
17. Lohner, K., Chen, K., Ayon, A. and Spearing, S., Mat. Res. Soc. Symp. Proc. 546, 85 (1999).Google Scholar
18. Lohner, K., Chen, K., Ayon, A. and Spearing, S.M., Mat. Res. Soc. Symp. Proc. 546, (1999).Google Scholar
19. Christiansen, S., Albrecht, M., and Strunk, H.P., J. Mater. Res. 11, 8 (1996).Google Scholar