Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T02:08:54.386Z Has data issue: false hasContentIssue false

Mechanical Properties of Biopolymer Chains

Published online by Cambridge University Press:  15 February 2011

Ruth Pachter
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, Ohio 45433
Peter D. Haaland
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, Ohio 45433
Robert L. Crane
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, Ohio 45433
W. Wade Adams
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, Ohio 45433
Get access

Abstract

Molecular simulations that predict the molecular mechanical response of alpha-helical biopolymers with a reinforcing intra-molecular hydrogen bonding network, viz,, a ‘spring-like’ behavior, are presented in this study. Mechanical properties of extended biopolymer strands based on naturally occurring amino acids, namely poly(L-A1a) and for comparison poly(LGlu), versus synthetic PPTA containing an amide bond, are compared to those assuming alpha-helical structures. Thus, the pivotal role of such motifs in biological systems utilizing superior compressive mechanical properties can be inferred.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Warrick, H.M. and Spudich, J.A., Ann. Rev. Cell Biol. 3, 379 (1987), and references therein.Google Scholar
[2] Byers, T.J. and Branton, D., Proc. Nat. Acad. Sci. 82, 6153 (1985).Google Scholar
[3] Marchesi, V.T., Ann. Rev. Cell Biol. 1, 531 (1985).Google Scholar
[4] Kaplan, D.L., Lombardi, S.J., Muller, W.S., and Fossey, S.A., ”Silks: Chemistry, Properties, and Genetics-Biomaterials: Novel Materials from Biological Sources”, Macmillan Press (1991); F.Vollrath, Scientific American, 70-76, March (1992); F. Vollrath and D.T. Edmonds, Nature, 340, 305 (1989).Google Scholar
[5] Mahoney, D., Vezie, D.L., Eby, R.K., and Adams, W.W., manuscript in preparation.Google Scholar
[6] McGarry, F.J. and Moalli, J.E., Polymer, 32, 1816 (1991); S.J. LeTeresa, R.S. Porter and R.J. Farris, J. Mater. Sci., 23 1886 (1988).Google Scholar
[7] Rutledge, G.C. and Suter, U.W., Polymer, 32, 179 (1991).Google Scholar
[8] Sorensen, R.A., Liau, W.B., and Boyd, R.H., Macromolecules, 21, 194 (1988).Google Scholar
[9] Tashiro, K., Kobayashi, M., and Tadokoro, H., Macromolecules, 11, 908 (1978).Google Scholar
[10] Wierschke, S.G., Shoemaker, J.R., Pachter, R., Haaland, P.D., and Adams, W.W., Polymer, 33, 357 (1992).Google Scholar
[11] Shoemaker, J.R., Horn, T.R., Haaland, P.D., Pachter, R., and Adams, W.W., Polymer, 33, 351 (1992).Google Scholar
[12] Stewart, J.J.P. in MOPAC (Version 5.0), Quantum Chemistry Program Exchange #455.Google Scholar
[13] Stewart, J.J.P., New Polym. Materials, 1 5359 (1987).Google Scholar
[14] Klei, H.E. and Stewart, J.J.P., Int. J. Quant. Chem., Quant. Chem. Symp., 20, 529 (1986).Google Scholar
[15] The invention by DuPont of the spinning of liquid crystalline acid solutions of stiff-chain poly(para-phenylene terephthalamide) (PPTA) [KEVLARTM] opened the field of high performance organic fibers (Kwolek, S., U. S. Patent No. 3 600 356 (1971).Google Scholar
[16] Perkins, P.G. and Stewart, J.J.P., J. Chem. Soc. Faraday Trans. II, 76, 520 (1980).Google Scholar
[17] CHARMm (Chemistry at HARvard Macromolecular mechanics) (Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., and Karplus, M., J. Comp. Chem. 4, 187 (1983); coded in Quanta: Release 3.0, Polygen Corporation, 1990.Google Scholar
[18] Rutledge, G.C., Suter, U.W., and Papaspyrides, C.D., Macromolecules, 24, 1934 (1991).Google Scholar
[19] Chang, C. and Hsu, S.L., Macromolecules, 23 1484 (1990), and Young, R.J., private communication.Google Scholar
[20] Haaland, P. D., Pachter, R., Pachter, M., Adams, W.W., Chemical Phys. Lett., 199, 379 (1992).Google Scholar
[21] Tanner, D., Fitzgerald, J.A., and Phillips, B.R., Adv. Mater., No.5, 151 (1989).Google Scholar
[22] Wegner, G., private communication, estimates the modulus as ca. 30 GPa.Google Scholar
[23] Cis- and trans- isomers of poly(para-phenylene benzobisimidazole) rigid rods were first synthesized by Kovar, R.F. and Arnold, F.E., J. Poly. Sci., Poly. Chem. Ed., 14, 2807 (1976), cis- and trans- poly(para-phenylene benzobisoxazole) by T.E. Helminiak F.E. Arnold, and C.L. Benner, Polymer Preprints, ACS Poly. Div. 16(2), 659 (1975), and cisand trans- poly(para-phenylene benzobisthiazole) by J. F. Wolfe, B.H. Loo, and F.E. Arnold, Polymer Preprints, ACS Poly. Div., 19(2), 1 (1978).Google Scholar
[24] Allcock, H.R., Science, 255, 11061112 (1992).Google Scholar
[25] Kumar, S., International Encyclopedia of Composites, 4, 51 (1991).Google Scholar
[26] Cooper, T.M., Obermeier, K.A., Natarajan, L.V., and Crane, R.L., Photochem. Photobio., 55, 1 (1991); R. Pachter, T.M. Cooper, L.V. Natarajan, K.A. Obermeier, R.L. Crane, and W.W. Adams, Biopolymers, 32, 1129 (1992).Google Scholar
[27] Smith, S.B., Finzi, L., and Bustamante, C., Science, 258, 1122 (1992)Google Scholar