Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T22:16:56.775Z Has data issue: false hasContentIssue false

Mechanical Properties of a β Containing Ti-Al-Cr-Alloy at Ambient and Elevated Temperatures

Published online by Cambridge University Press:  22 February 2011

W. R. Chen
Affiliation:
Shanghai University of Technology, The Institute of Materials Science 149 Yanchang Road, Shanghai 200072, P. R. China
J. Wang
Affiliation:
Shanghai University of Technology, The Institute of Materials Science 149 Yanchang Road, Shanghai 200072, P. R. China
B. Zhang
Affiliation:
Shanghai University of Technology, The Institute of Materials Science 149 Yanchang Road, Shanghai 200072, P. R. China
X. Wan
Affiliation:
Shanghai University of Technology, The Institute of Materials Science 149 Yanchang Road, Shanghai 200072, P. R. China
W. J. Chen
Affiliation:
Shanghai University of Technology, The Institute of Materials Science 149 Yanchang Road, Shanghai 200072, P. R. China
Get access

Abstract

The mechanical properties of a β-containing Ti-Al-Cr alloy were investigated at ambient and elevated temperatures. The results show that the Ti-Al-Cr alloy containing the β phase has a very high tensile strength but a poor ductility at ambient temperature, and that higher ductility is obtained at high temperatures. The temperature dependence of mechanical properties is found to be sensitive to the strain rate during the test. Fractography shows that the fracture mode changes from fully brittle to ductile-brittle mixture with the increased temperature. All the results suggest that the triple-phased TiAl alloys (α2+β+γ) may have the combined mechanical properties of the dual-phased T13Al ((α2+β) and dual-phased TiAl (α2+γ) alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lipsitt, H. A., in High-Temperature Ordered Intermetallic Alloys I, eds. Koch, C. C., Liu, C. T., and Stoloff, N. S. (Pittsburgh, PA: MRS 39, 1985) 351364.Google Scholar
2. Kim, Y.-W., JOM 41(7), 2430 (1989).Google Scholar
3. Kim, Y.-W. and Froes, F. H., in High-Temperature Aluminides and Intermetallics, eds Whang, S. H., Liu, C. T., Pope, D., and Stiegler, J. O. (Warrendale, PA: TMS, 1990) 465492.Google Scholar
4. Lipsitt, H. A., Shechtman, D., and Schafrik, R. E., Metall. Trans. 6A, 19911996 (1975).Google Scholar
5. Huang, S. C., Scr. Metall. 22, 18851888 (1988).Google Scholar
6. Huang, S. C. and Hall, E. L., Metall. Trans 22A, 427439 (1991).Google Scholar
7. Wunderlich, W., Kremser, T., and Frommeyer, G., , Z. Metallkde., Bd. 81(11), 802808 (1990).Google Scholar
8. Masahashi, N., Mizuhara, Y., Matsuo, M., Hashimoto, K., Kimura, M., Hanamura, T., and Fujii, H., in High-Temperature Ordered Intermetallic Alloys IV, eds. Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Pittsburgh, PA: MRS 213, 1991) 795800.Google Scholar
9. Zheng, Y., Zhao, L., and Tangri, K., Scr. Metall. Mater. 26, 219224 (1992).Google Scholar
10. Kimura, M., Hashimoto, K., and Morikawa, H., Mater. Sci and Eng. A152, 5459 (1992).Google Scholar
11. Chen, W. R., Wang, J., Zhang, B., and Wan, X., Scr. Metall. Mater. 30, 8387 (1994); 30, 399–404 (1994).Google Scholar
12. Lipsitt, H. A., Shechtman, D., and Schafrik, R., Metall. Trans. 11A, 13691375 (1980).Google Scholar
13. Rao, P. and Tangri, K., Mater. Sci. and Eng. A132, 49 (1991).Google Scholar
14. Huang, S. C. and Hall, E. L., Scr. Metall. Mater. 25, 18051809 (1991).Google Scholar
15. Kawabata, T., Kanai, T., and Izumi, O., Acta. Metall. 33, 1355 (1985).Google Scholar