Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T05:57:18.302Z Has data issue: false hasContentIssue false

Mechanical integrity of yttria-stabilised zirconia doped with Np oxide

Published online by Cambridge University Press:  21 March 2011

Hajime Kinoshita
Affiliation:
Department of Nuclear Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Ken-ichi Kuramoto
Affiliation:
Department of Nuclear Energy System, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195, Japan
Masayoshi Uno
Affiliation:
Department of Nuclear Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Shinsuke Yamanaka
Affiliation:
Department of Nuclear Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Hisayoshi Mitamura
Affiliation:
Department of Environmental Sciences, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195, Japan
Tsunetaka Banba
Affiliation:
Department of Environmental Sciences, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195, Japan
Get access

Abstract

Mechanical properties of YSZ doped with Np oxide were studied to investigate the sufficiency to be a waste form for immobilisation of highly concentrated TRU. The study was conducted focusing on Vickers (HV) and Knoop (HK) hardness, Young's modulus (E) and fracture toughness (KIC). The results showed that YSZ is harder and more resistant to elastic deformation and crack development than such waste forms as borosilicate glass and synroc. The effects of porosity and Np content on HV, HK, E and KIC are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kinoshita, H., Kuramoto, K., Uno, M., Yanagi, T., Yamanaka, S., Mitamura, H., Banba, T., J. Am. Ceram. Soc. 83 [2], 391396 (2000).Google Scholar
2. Kinoshita, H., Kuramoto, K., Uno, M., Yamanaka, S., Mitamura, H., Banba, T., Mat. Res. Soc. Symp. Proc. 608, 393398 (2000).Google Scholar
3. Hinatsu, Y., and Muromura, T., Mat. Res. Bull. 21, 13431349 (1986).Google Scholar
4. Muromura, T., and Hinatsu, Y., J. Nucl. Mater. 137, 227235 (1986).Google Scholar
5. Muromura, T., and Hinatsu, Y., J. Nucl. Mater. 151, 5562 (1987).Google Scholar
6. Japan Industrial Standard R 1607-1995, Japanese Standards Association, Tokyo Japan 1995.Google Scholar
7. Marshall, D. B., Noma, T., and Evans, A. G., J. Am. Ceram. Soc. 65, C175 (1982).Google Scholar
8. Lutze, W., Radioactive Waste Forms for the Future, Ed. Lutze, W., and Ewing, R. C.. Elsevier Science Publishing Company, New York, NY, 1988 pp. 1159.Google Scholar
9. Weber, W. J., Matzke, Hj., and Routbort, J. L., J. Mater. Sci. 19, 25332545 (1984).Google Scholar
10. Ringwood, A. E., Kesson, S. E., Reeve, K. D., Levins, D. M., and Ramm, E. J., Radioactive Waste Forms for the Future, Ed. Lutze, W., and Ewing, R. C.. Elsevier Science Publishing Company, New York, NY, 1988 pp. 233334.Google Scholar
11. Wachtman, J. B. Jr., Mechanical and Thermal Properties of Ceramics, National Bureau of Standards Spec. Publ. No. 303, 139168 (1968).Google Scholar
12. Phani, K. K., and Niyogi, S. K., J. Am. Ceram. Soc. 70 [12], C-362-366 (1987).Google Scholar
13. Hashin, Z., J. Appl. Mechanics 29 [1], 143150 (1962).Google Scholar
14. Ramakrishnan, N., and Arunachalam, V. S., J. Am. Ceram. Soc. 76 [11], 27452752 (1993).Google Scholar
15. Luo, J., and Stevens, R., Ceramics International 25, 281286 (1999).Google Scholar
16. Winnubst, A. J. A., Keizer, K., and Burggraaf, A. J., J. Mater. Sci. 18, 19581966 (1983).Google Scholar
17. Ainscough, J. B., Rigby, F., and Osborn, S. C., J. Nucl. Mater. 52, 191203 (1974).Google Scholar
18. Radford, K. C., and Pope, J. M., J. Nucl. Mater. 116, 305313 (1983).Google Scholar