Skip to main content Accessibility help

Mechanical Deformation of Crystalline Silicon During Nanoindentation

  • J.E. Bradby (a1), J.S. Williams (a1), J. Wong-Leung (a1), M.V. Swain (a2) and P. Munroe (a3)...


Deformation during spherical and pointed indentation in (100) crystalline silicon usig a UMIS-2000 nanoindenter has been studied using cross-sectional transmission electron microscopy (XTEM), atomic force microscopy (XTEM), atomic force microscopy and Raman microspectroscopy. XTEM samples were prepard by focused ion beam milling to accurately position the cross-section through the indentations. Indentation loads were chosen below an above the yield point for silicon to investigate the modes of plastic deformation. Slip planes are visible in XTEm micrographs for all indentation loads studied but slip is not the main avenue for plastic deformation. A thin layer of poly-crystalline material has been identified (indexed as Si-XII from diffraction patterns) on the low load indentation, just prior to yield (pop-in during loading). For loading above the yield point, a large region of amorphous silicon was observed directly under the indenter when fast unloading conditions were used. The various microstructures and phase observed below indentations are correlated with load/unload data.



Hide All
[1] Clarke, D.R., Kroll, M.C., Kirchner, P.D., Cook, R.F., and Hockey, B.J., Phys. Rev. Lett. 21, 2156 (1988).
[2] Weppelmann, E.R., Field, J.S., and Swain, M.V., J. Mat. Res. 8, 830 (1993).
[3] Page, T., Oliver, W.C., and McHargue, C.J., J. Mat. Res. 7, 450 (1992).
[4] Williams, J.S., Chen, Y., Wong-Leung, J., Kerr, A., and Swain, M.V., J. Mater. Res. 14, 2338 (1999).
[5] Mann, A.B., Heerden, D. van, Pethica, J.B., and Weihs, T.P., J. Mater. Res. 15, 1754 (2000).
[6] Hu, J.Z., Merkle, L.D., Menoni, C.S., and Spain, I.L., Phys. Rev.B 34, 4679 (1986).
[7] Gilman, J.J., Phil. Mag B 67, 207(1993).
[8] Tabor, D., The Hardness of Metals (Oxford Press, Oxford, 1951).
[9] Piltz, R.O., Maclean, J.R., Clarke, S.J., Ackland, G.J., Hatton, P.D., and Crain, J., Phys. Rev. B 52, 472 (1995).
[10] Kailer, A., Gogotsi, Y.G., and Nickel, K.G., J. Appl. Phys. 81, 3057 (1997).
[11] Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P., Appl. Phys. Lett. 77, 3749 (2000).
[12] Callahan, D.L. and Morris, J.C., J. Mater. Res. 7, 1614 (1992).
[13] Wu, Y.Q. and Xu, Y.B., J. Mat. Res. 14, 682 (1999)
[14] Shimatani, A., Nango, T., , Suprijadi, and Saka, H., Mat.Res.Soc.Symp. Proc. 522, 71 (1998).
[15] Saka, H., J. Vac. Sci. Technol. B 16, 2522 (1998).
[16] Kailer, A., Nickel, K.G., and Gogotsi, Y.G., J. Ram. Spect. 30, 939 (1999).
[17] Lucazeau, G. an Abello, L., Analusis 23, 301 (1995).
[18] Domnich, V., Gogotsi, Y., and Dub, S., App.Phys.Lett, 76, 2214 (2000).
[19] Gogotsi, Y.G., Domnich, V., Dub, S., Kailer, A., and Nickel, K.G., J. Mater. Res. 15, 871 (2000).
[20] Lawn, B., Fracture of Brittle Solids(Cambridge University Press, Cambridge, 1993).

Mechanical Deformation of Crystalline Silicon During Nanoindentation

  • J.E. Bradby (a1), J.S. Williams (a1), J. Wong-Leung (a1), M.V. Swain (a2) and P. Munroe (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed