Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T01:00:45.462Z Has data issue: false hasContentIssue false

Mechanical Behavior of Functional Hybrid Coating Based on Anisotropic Iron Oxide Nanoparticles

Published online by Cambridge University Press:  17 March 2011

Nicolas Chemin
Affiliation:
Saint-Gobain Recherche, 39 quai Lucien Lefranc, Aubervilliers, 93303, France Laboratoire de la Chimie de la Matière Condensée de Paris, UPMC, Univ Paris 06, UMR 7574, 4 place Jussieu, Tour 54-55, E. 5, Paris, 75252, France
Laurence Rozes
Affiliation:
Laboratoire de la Chimie de la Matière Condensée de Paris, UPMC, Univ Paris 06, UMR 7574, 4 place Jussieu, Tour 54-55, E. 5, Paris, 75252, France
Corinne Chanéac
Affiliation:
Laboratoire de la Chimie de la Matière Condensée de Paris, UPMC, Univ Paris 06, UMR 7574, 4 place Jussieu, Tour 54-55, E. 5, Paris, 75252, France
Sophie Cassaignon
Affiliation:
Laboratoire de la Chimie de la Matière Condensée de Paris, UPMC, Univ Paris 06, UMR 7574, 4 place Jussieu, Tour 54-55, E. 5, Paris, 75252, France
Jean-Pierre Jolivet
Affiliation:
Laboratoire de la Chimie de la Matière Condensée de Paris, UPMC, Univ Paris 06, UMR 7574, 4 place Jussieu, Tour 54-55, E. 5, Paris, 75252, France
Etienne Barthel
Affiliation:
Surface du Verre et Interfaces, UMR Saint-Gobain/CNRS, 39 quai Lucien Lefranc, Aubervilliers, 93303, France
Eric Le Bourhis
Affiliation:
Laboratoire de Métallurgie Physique, Université de Poitiers, SP2MI, Boulevard Marie et Pierre Curie, Futuroscope Chasseneuil, 86 962, France
Clément Sanchez
Affiliation:
Laboratoire de la Chimie de la Matière Condensée de Paris, UPMC, Univ Paris 06, UMR 7574, 4 place Jussieu, Tour 54-55, E. 5, Paris, 75252, France
Get access

Abstract

Functional hybrid coatings have been elaborated from a polymer matrix incorporating iron oxide nanoparticles. Stable aqueous suspensions of goethite (α-FeOOH) nanorods, obtained by controlled precipitation of Fe3+ ions, were introduced in 2-hydroxyethyl methacrylate (HEMA). The films were spin-coated on glass substrates from the solutions prior to a UV light induced free radical polymerization step. Nanoindentation tests were carried out to investigate the mechanical properties of the hybrid coatings. Swelling measurements and Fourier Transformed Infrared Spectroscopy (FTIR) were used to characterize the interface between the iron oxide nanoparticles and the PHEMA matrix. Cross-sectional scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was performed to evaluate the dispersion state of the iron oxide particles through the matrix. From a mechanical point of view, iron oxide nanorods yield to a strong reinforcement effect of PHEMA (increase in modulus and hardness by a factor 2 with 5%vol goethite nanoparticles). Origins of such reinforcement are attributed to the existence of highly favourable interactions at the goethite-PHEMA interface combined with a homogeneous dispersion of the particles. The nature of these interactions and evidences of there influence on the mechanical behaviour of the nanohybrid coatings are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sanchez, C., Julian, B., Belleville, P., and Popall, M., Journal of Materials Chemistry, 15(2005), 35593592.Google Scholar
[2] Zheludkevich, M.L., Salvado, I. Miranda, and Ferreira, M.G.S., Journal of Materials Chemistry, 15(2005), 50995111.Google Scholar
[3] Mammeri, F., Bourhis, E. Le, Rozes, L., and Sanchez, C., Journal of Materials Chemistry, 15(2005), 37873811.Google Scholar
[4] Krogman, K.C., Druffel, T., and Sunkara, M.K., Nanotechnology 16 (2005) S338–S343.Google Scholar
[5] Takahashi, S., Goldberg, H.A., Feeney, C.A., Karim, D.P., Farrell, M., O'Leary, K., and Paul, D.R., Polymer 47 (2006) 30833093.Google Scholar
[6] Barna, E., Bommer, B., Kursteiner, J., Vital, A., Trzebiatowski, O.V., Koch, W., Schmid, B., and Graule, T., Composites: Part A 36 (2005) 473480.Google Scholar
[7] Gass, J., Poddar, P., Almand, J., Srinath, S., and Srikanth, H., Advanced Functional Materials, 16 (2006), 7175.Google Scholar
[8] Pastoriza-Santos, I., Perez-Juste, J., Kickelbick, G., Liz-Marzan, L.M., Journal of Nanoscience and Nanotechnology 6 (2006), 453458.Google Scholar
[9] Rhim, J.W., Hong, S.I., Park, H.M., Ng, P.K.W., Journal of Agricultural and Food Chemistry, 54 (2006), 58145822.Google Scholar
[10] Cornell, R.M., Schertmann, U., The iron oxides: Structure, Properties, Reactions, Occurrence and Uses; VCH Publishers: Weinheim, 1996.Google Scholar
[11] Jolivet, J.P., Tronc, E., Chanéac, C., Chemical Communications 2004, 481487.Google Scholar
[12] Ullmann, M., Friedlander, S.K., Schmidt-Ott, A., Journal of Nanoparticle Research, 4 (2002), 499509.Google Scholar
[13] Tannenbaum, R., Zubris, M., Goldberg, E. P., Reich, S., Dan, N., Macromolecules, 38 (2005), 42544259.Google Scholar
[14] Dallas, P., Georgakilas, V., Niarchos, D., Nanotechnology 17 (2006), 20462053.Google Scholar
[15] Baker, C., Shah, S. Ismat, Hasanain, S.K., Journal of Magnetism and Magnetic Materials, 280 (2004), 412418.Google Scholar
[16] Atkinson, R.J., Posner, A. M., and Quirk, J. P., Journal of Physic Chemistry, 71 (1967), 550.Google Scholar
[17] Oliver, W.C. and Pharr, G.M., Journal of Material Research 7 (1992), 1564 Google Scholar
[18] Berriot, J., Montes, H., Lequeux, F., Monnerie, L., Long, D., Sotta, P., Journal of Non-Crystalline Solids, 307–310 (2002), 719724.Google Scholar
[19] Ciprari, D., Jacob, K., Tannenbaum, R., Macromolecules, 39, (2006) 65656573.Google Scholar
[20] Tadd, E. H., Zeno, A. D., Zubris, M., Dan, N., Tannenbaum, R., Macromolecules, 36, (2003), 64976502.Google Scholar
[21] Harris, L.A., Goff, J.D., Carmichael, A.Y., Riffle, J.S., Harburn, J.J., Pierre, T.G. St., Saunders, M., Chemistry of Materials, 15, (2003), 1367.Google Scholar