Skip to main content Accessibility help
×
Home

Mechanical and Optical Properties Characterization of C-Plane (0001) and M-Plane (10−10) GaN by Nanoindentation and Luminescence

  • Toshiya Yokogawa (a1), Masaki Fujikane (a2), Shijo Nagao (a3) and Roman Nowak (a4)

Abstract

Yield shear stress dependence on dislocation density and crystal orientation was studied in bulk GaN crystals by nanoindentation examination. The yield shear stress decreased with increasing dislocation density which is estimated by dark spot density in cathodoluminescence, and it decreased with decreasing nanoindentation strain-rate. It reached and coincided at 11.5 GPa for both quasi-static deformed c-plane (0001) and m-plane (10-10) GaN. Taking into account theoretical Peierls–Nabarro stress and yield stress for each slip system, these phenomena were concluded to be an evidence of heterogeneous mechanism associated plastic deformation in GaN crystal. Transmission electron microscopy and molecular dynamics simulation also supported the mechanism with obtained r-plane (-1012) slip line right after plastic deformation, so called pop-in event. The agreement of the experimentally obtained atomic shuffle energy with the calculated twin boundary energy suggested that the nucleation of the local metastable twin boundary along the r-plane concentrated the indentation stress, leading to an r-plane slip. This nanoindentation examination is useful for the characterization of crystalline quality because the wafer mapping of the yield shear stress coincided the photoluminescence mapping which shows increase of emission efficiency due to reduction of non-radiative recombination process by dislocation.

Copyright

References

Hide All
1. Fujikane, M., Leszczyński, M., Nagao, S., Nakayama, T., Yamanaka, S., Niihara, K., and Nowak, R., J. Alloy. Compd. 450, 405 (2008).
2. Fujikane, M., Inoue, A., Yokogawa, T., Nagao, S., and Nowak, R., Phys. Status Solidi C 7, 1798 (2010).
3. Fujikane, M., Yokogawa, T., Nagao, S., and Nowak, R., Phys. Status Solidi C 8, 429 (2011).
4. Fujikane, M., Yokogawa, T., Nagao, S., and Nowak, R., Appl. Phys. Lett. 99, 222106 (2011).
5. Hardy, M. T., Hsu, P. S., Wu, F., Koslow, I. L., Young, E. C., Nakamura, S., Romanov, A. E., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett. 100, 202103 (2012).
6. Huang, J., Xu, K., Gong, X. J., Wang, J. F., Fan, Y. M., Liu, J. Q., Zeng, X. H., Ren, G. Q., Zhou, T. F., and Yang, H., Appl. Phys. Lett. 98, 221906 (2011).
7. Bradby, J. E., Kucheyev, S. O., Williams, J. S., Jagadish, C., Swain, M. V., Munroe, P., and Phillips, M. R., Appl. Phys. Lett. 80, 4537 (2002).
8. Jahn, U., Trampert, A., Wagner, T., Brandt, O., and Ploog, K. H., Phys. Status Solidi A 192, 79 (2002).
9. Chien, C. H., Jian, S. R., Wang, C. T., Juang, J. Y., Huang, J. C., and Lai, Y. S., J. Phys. D Appl. Phys. 40, 3985 (2007).
10. Jian, S. R., Juang, J. Y., and Lai, Y. S., J. Appl. Phys. 103, 033503 (2008).
11. Jian, S. R., Nanoscale Res. Lett. 3, 6 (2008).
12. Tsai, C. H., Jian, S. R., and Juang, J. Y., Appl. Surf. Sci. 254, 1997 (2008).
13. Srinivasan, S., Geng, L., Liu, R., Ponce, F. A., Narukawa, Y., and Tanaka, S., Appl. Phys. Lett. 83, 5187 (2003).
14. Nowak, R., Pessa, M., Suganuma, M., Leszczyński, M., Grzegory, I., Porowski, S., and Yoshida, F., Appl. Phys. Lett. 75, 2070 (1999).
15. Nowak, R., Sekino, T., Maruno, S., and Niihara, K., Appl. Phys. Lett. 68, 1063 (1996).
16. Nowak, R., Sekino, T., and Niihara, K., Philos. Mag. A 74, 171 (1996).
17. Nowak, R., Sekino, T., and Niihara, K., Acta Mater. 47, 4329 (1999).
18. Nowak, R., Manninen, T., Heiskanen, K., Sekino, T., Hikasa, A., Niihara, K., and Takagi, T., Appl. Phys. Lett. 83, 5214 (2003).
19. Tymiak, N., Chrobak, D., Gerberich, W., Warren, O., and Nowak, R., Phys. Rev. B 79, 174116 (2009).
20. Chrobak, D., Nordlund, K., and Nowak, R., Phys. Rev. Lett. 98, 045502 (2007).
21. Nowak, R., Chrobak, D., Nagao, S., Vodnick, D, Berg, M., Tukiainen, A., and Pessa, M., Nat. Nanotechnol. 4, 287 (2009).
22. Chrobak, D., Tymiak, N., Beaber, A., Ugurlu, O., Gerberich, W. W., and Nowak, R., Nat. Nanotechnol. 6, 480 (2011).
23. Wu, J. Y., Nagao, S., He, J. Y., and Zhang, Z. L., Nano Lett. 11, 5264 (2011).
24. Nowak, R., Horino, Y., Ando, Y., and Maruno, S., Appl. Phys. Lett. 68, 3743 (1996).
25. Nagao, S., Nordlund, K., and Nowak, R., Phys. Rev. B 73, 144113 (2006).
26. Nagao, S., Fujikane, M., Tymiak, N., and Nowak, R., J. Appl. Phys. 105, 106104 (2009).
27. Fujikane, M., Setoyama, D., Nagao, S., Nowak, R., and Yamanaka, S., J. Alloy. Compd. 431, 250 (2007).
28. Nord, J., Nordlund, K., Keinonen, J., and Albe, K.: Nucl. Instrum. Methods. Phys. Res. Sect. B 202, 93 (2003).
29. Yip, S., Nature 391, 532 (1998).
30. Schiøtz, J.1, Di Tolla, F. D., and Jacobsen, K. W., Nature 391, 561 (1998).
31. Gerberich, W. and Mook, W., Nat. Mater. 4, 577 (2005).
32. Schuh, C. A., Mason, J. K., and Lund, A. C., Nat. Mater. 4, 617 (2005).
33. Béré, A. and Serra, A.: Phys. Rev. B 68, 033305 (2003).
34. Béré, A. and Serra, A.: Philos. Mag. 86, 2159 (2006).
35. Fischer-Cripps, A. C., Introduction to Contact Mechanics, 2nd. ed. (Springer Science+Business Media, LLC, 2007) Chap. 5, pp. 8791.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed