Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T07:53:46.941Z Has data issue: false hasContentIssue false

Mechanical and Optical Properties Characterization of C-Plane (0001) and M-Plane (10−10) GaN by Nanoindentation and Luminescence

Published online by Cambridge University Press:  11 June 2015

Toshiya Yokogawa
Affiliation:
Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
Masaki Fujikane
Affiliation:
Panasonic Corporation, Moriguchi, Osaka 570-8501, Japan
Shijo Nagao
Affiliation:
Osaka University, Suita, Osaka 565-0871, Japan
Roman Nowak
Affiliation:
Aalto University, FI-00076 Aalto, Finland
Get access

Abstract

Yield shear stress dependence on dislocation density and crystal orientation was studied in bulk GaN crystals by nanoindentation examination. The yield shear stress decreased with increasing dislocation density which is estimated by dark spot density in cathodoluminescence, and it decreased with decreasing nanoindentation strain-rate. It reached and coincided at 11.5 GPa for both quasi-static deformed c-plane (0001) and m-plane (10-10) GaN. Taking into account theoretical Peierls–Nabarro stress and yield stress for each slip system, these phenomena were concluded to be an evidence of heterogeneous mechanism associated plastic deformation in GaN crystal. Transmission electron microscopy and molecular dynamics simulation also supported the mechanism with obtained r-plane (-1012) slip line right after plastic deformation, so called pop-in event. The agreement of the experimentally obtained atomic shuffle energy with the calculated twin boundary energy suggested that the nucleation of the local metastable twin boundary along the r-plane concentrated the indentation stress, leading to an r-plane slip. This nanoindentation examination is useful for the characterization of crystalline quality because the wafer mapping of the yield shear stress coincided the photoluminescence mapping which shows increase of emission efficiency due to reduction of non-radiative recombination process by dislocation.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujikane, M., Leszczyński, M., Nagao, S., Nakayama, T., Yamanaka, S., Niihara, K., and Nowak, R., J. Alloy. Compd. 450, 405 (2008).CrossRefGoogle Scholar
Fujikane, M., Inoue, A., Yokogawa, T., Nagao, S., and Nowak, R., Phys. Status Solidi C 7, 1798 (2010).CrossRefGoogle Scholar
Fujikane, M., Yokogawa, T., Nagao, S., and Nowak, R., Phys. Status Solidi C 8, 429 (2011).CrossRefGoogle Scholar
Fujikane, M., Yokogawa, T., Nagao, S., and Nowak, R., Appl. Phys. Lett. 99, 222106 (2011).Google Scholar
Hardy, M. T., Hsu, P. S., Wu, F., Koslow, I. L., Young, E. C., Nakamura, S., Romanov, A. E., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett. 100, 202103 (2012).CrossRefGoogle Scholar
Huang, J., Xu, K., Gong, X. J., Wang, J. F., Fan, Y. M., Liu, J. Q., Zeng, X. H., Ren, G. Q., Zhou, T. F., and Yang, H., Appl. Phys. Lett. 98, 221906 (2011).CrossRefGoogle Scholar
Bradby, J. E., Kucheyev, S. O., Williams, J. S., Jagadish, C., Swain, M. V., Munroe, P., and Phillips, M. R., Appl. Phys. Lett. 80, 4537 (2002).CrossRefGoogle Scholar
Jahn, U., Trampert, A., Wagner, T., Brandt, O., and Ploog, K. H., Phys. Status Solidi A 192, 79 (2002).3.0.CO;2-5>CrossRefGoogle Scholar
Chien, C. H., Jian, S. R., Wang, C. T., Juang, J. Y., Huang, J. C., and Lai, Y. S., J. Phys. D Appl. Phys. 40, 3985 (2007).CrossRefGoogle Scholar
Jian, S. R., Juang, J. Y., and Lai, Y. S., J. Appl. Phys. 103, 033503 (2008).CrossRefGoogle Scholar
Jian, S. R., Nanoscale Res. Lett. 3, 6 (2008).CrossRefGoogle Scholar
Tsai, C. H., Jian, S. R., and Juang, J. Y., Appl. Surf. Sci. 254, 1997 (2008).CrossRefGoogle Scholar
Srinivasan, S., Geng, L., Liu, R., Ponce, F. A., Narukawa, Y., and Tanaka, S., Appl. Phys. Lett. 83, 5187 (2003).CrossRefGoogle Scholar
Nowak, R., Pessa, M., Suganuma, M., Leszczyński, M., Grzegory, I., Porowski, S., and Yoshida, F., Appl. Phys. Lett. 75, 2070 (1999).CrossRefGoogle Scholar
Nowak, R., Sekino, T., Maruno, S., and Niihara, K., Appl. Phys. Lett. 68, 1063 (1996).CrossRefGoogle Scholar
Nowak, R., Sekino, T., and Niihara, K., Philos. Mag. A 74, 171 (1996).CrossRefGoogle Scholar
Nowak, R., Sekino, T., and Niihara, K., Acta Mater. 47, 4329 (1999).CrossRefGoogle Scholar
Nowak, R., Manninen, T., Heiskanen, K., Sekino, T., Hikasa, A., Niihara, K., and Takagi, T., Appl. Phys. Lett. 83, 5214 (2003).CrossRefGoogle Scholar
Tymiak, N., Chrobak, D., Gerberich, W., Warren, O., and Nowak, R., Phys. Rev. B 79, 174116 (2009).CrossRefGoogle Scholar
Chrobak, D., Nordlund, K., and Nowak, R., Phys. Rev. Lett. 98, 045502 (2007).CrossRefGoogle Scholar
Nowak, R., Chrobak, D., Nagao, S., Vodnick, D, Berg, M., Tukiainen, A., and Pessa, M., Nat. Nanotechnol. 4, 287 (2009).CrossRefGoogle Scholar
Chrobak, D., Tymiak, N., Beaber, A., Ugurlu, O., Gerberich, W. W., and Nowak, R., Nat. Nanotechnol. 6, 480 (2011).CrossRefGoogle Scholar
Wu, J. Y., Nagao, S., He, J. Y., and Zhang, Z. L., Nano Lett. 11, 5264 (2011).CrossRefGoogle Scholar
Nowak, R., Horino, Y., Ando, Y., and Maruno, S., Appl. Phys. Lett. 68, 3743 (1996).CrossRefGoogle Scholar
Nagao, S., Nordlund, K., and Nowak, R., Phys. Rev. B 73, 144113 (2006).CrossRefGoogle Scholar
Nagao, S., Fujikane, M., Tymiak, N., and Nowak, R., J. Appl. Phys. 105, 106104 (2009).CrossRefGoogle Scholar
Fujikane, M., Setoyama, D., Nagao, S., Nowak, R., and Yamanaka, S., J. Alloy. Compd. 431, 250 (2007).CrossRefGoogle Scholar
Nord, J., Nordlund, K., Keinonen, J., and Albe, K.: Nucl. Instrum. Methods. Phys. Res. Sect. B 202, 93 (2003).Google Scholar
Yip, S., Nature 391, 532 (1998).CrossRefGoogle Scholar
Schiøtz, J.1, Di Tolla, F. D., and Jacobsen, K. W., Nature 391, 561 (1998).CrossRefGoogle Scholar
Gerberich, W. and Mook, W., Nat. Mater. 4, 577 (2005).CrossRefGoogle Scholar
Schuh, C. A., Mason, J. K., and Lund, A. C., Nat. Mater. 4, 617 (2005).CrossRefGoogle Scholar
Béré, A. and Serra, A.: Phys. Rev. B 68, 033305 (2003).CrossRefGoogle Scholar
Béré, A. and Serra, A.: Philos. Mag. 86, 2159 (2006).CrossRefGoogle Scholar
Fischer-Cripps, A. C., Introduction to Contact Mechanics, 2nd. ed. (Springer Science+Business Media, LLC, 2007) Chap. 5, pp. 8791.CrossRefGoogle Scholar