Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T00:24:12.229Z Has data issue: false hasContentIssue false

Mechanical and Electro-Mechanical Stress Effects on Performance of Flexible IZO TFTs

Published online by Cambridge University Press:  23 August 2012

T. L. Alford
Affiliation:
School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, U.S.A.
Anil Indluru*
Affiliation:
School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, U.S.A.
Rajitha N. P. Vemuri
Affiliation:
School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, U.S.A.
*
*Email: TA@asu.edu
Get access

Abstract

This study reports the influence of electrical and mechanical stresses on indium zinc oxide (IZO) thin film transistors (TFTs).The deformation is introduced by mounting the samples on cylindrical structures of varying radii creating tensile or compressive strains. The mechanical stresses are parallel and perpendicular to the length of the channel layer. Results reveal that, when the stresses are parallel to the channel length, mobilities increase under tensile stresses and reduce under compressive stresses; while, the effect on sub-threshold is contrary to this. However no changes are observed for mobilities and sub-threshold swings when the stresses are perpendicular to the channel length. The TFTs exhibit stability under the electromechanical stressing with no device failure observed over prolonged stress times.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoffman, R., Emery, T., Yeh, B., Koch, T., and Jackson, W., Proc. SID Symp. Int. Tech. Papers, 288 (2009).Google Scholar
2. Gleskova, H. and Wagner, S., IEEE Electron Device Lett., 20 (9), 473 (1999).Google Scholar
3. Venugopal, S. M., Marrs, M., Kaftanoglu, K., Dey, A., Wilson, J. R., Bawolek, E., Allee, D. R., and Loy, D., Proc. Flexible Electron. Display Conf., Phoenix, AZ, Feb. 2010.Google Scholar
4. Gleskova, H., Wagner, S., and Suo, Z., 75 (19), 3011 (1999).Google Scholar
5. Zeng, K., Zhu, F., Hu, J., Shen, L., Zhang, K., and Gong, H., Thin Solid Films, 443, 60 (2003).Google Scholar
6. Weick, B. L. and Bhushan, C., IEEE Trans. Magn., 32 (4), 3119 (1996).Google Scholar
7. Wang, M. C., Tsao, S. W., Chang, T. C., Lin, Y. P., Liu, P. T., and Chen, J. R., Solid State Electron., 54 (11), 1485 (2010).Google Scholar
8. Globus, T., Slade, H. C., Shur, M., and Hack, M., Proc. Mater. Res. Soc., 334, 823 (1994).Google Scholar
9. Sherman, S.Wagner, S., and Gottscho, R. A., Appl. Phys. Lett., 69 (21), 3242 (1996).Google Scholar
10. Shur, M. and Hack, M., J. Appl. Phys., 55 (10), 3831 (1984).Google Scholar
11. Street, R. A., Kakalios, J., and Hack, M., Phys. Rev. B, Condens. Matter, 38 (8), 5603 (1988).Google Scholar