Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T02:52:04.177Z Has data issue: false hasContentIssue false

Measurement of Residual Stress in Thin Films Using the Optical Microprobe

Published online by Cambridge University Press:  10 February 2011

A. Atkinson
Affiliation:
Department of Materials, Imperial College, London SW7 2BP, UK.
D. R. Clarke
Affiliation:
Materials Department, University of California at Santa Barbara, Santa Barbara CA 93106 USA
S. C. Jain
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
K. Pinardi
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
S. Webb
Affiliation:
Department of Materials, Imperial College, London SW7 2BP, UK.
Get access

Abstract

The laser optical microprobe is a powerful tool for studying the spatial variation of residual stress exploiting the sensitivity of Raman and luminescence spectra to the local stress. Here, using two different examples, we consider some issues determining the depth and lateral resolution of these techniques and their use in stress mapping in thin films. The first example involves Raman microprobe studies of a strained GeSi alloy quantum wire structure. The second example involves stress mapping using chromium ion luminescence in alumina films grown by high temperature thermal oxidation of NiAl single crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dietrich, B., Bugiel, E., Frankenfeldt, H., Harker, A. H., Jagdhold, U., Tillack, B. and Wolff, A., Solid State Electronics 40, 307 (1996).Google Scholar
2Jain, S. C., Pinardi, K., Maes, H. E., Van Overstraeten, R., Atkinson, A. and Willander, M., Semiconductor Science and Technology 12, 1507 (1997).Google Scholar
3Lipkin, D. M. and Clarke, D. R., J. Appl. Phys. 77, 1855 (1995).Google Scholar
4Jain, S. C., Maes, H., Pinardi, K. and De Wolf, I., J. Appl. Phys 79, 8145 (1996).Google Scholar
5Lipkin, D. M., Clarke, D. R., Hollatz, M., Bobeth, M. and Pompe, W., Corros. Sci. 39,231 (1997).Google Scholar
6He, J. and Clarke, D. R., J. Amer. Ceram. Soc. 78, 1347 (1995).Google Scholar