Skip to main content Accessibility help

Measurement of Piezoelectric Transverse and Longitudinal Displacement with Atomic Force Microscopy for PZT Thick Films

  • Yuta Kashiwagi (a1) (a2), Takashi Iijima (a2), Toru Aiso (a3), Takashi Yamamoto (a4), Ken Nishida (a4), Hiroshi Funakubo (a5), Takashi Nakajima (a1) and Soichiro Okamura (a1)...


The actual transverse and longitudinal displacement of PZT thick film was measured using a newly developed atomic force microscopy (AFM). The AFM is attached a feedback circuit named “torsion feedback”. The torsion and Z-height feedback circuits control an AFM cantilever to follow piezoelectric deformation of the sample. To measure transverse displacement, the cantilever contacts the edge of sample. The transverse displacement is determined from the torsion feedback signal absolutely. To measure longitudinal displacement, the cantilever contacts the center of sample. The longitudinal displacement is determined from Z-height feedback signal absolutely. A 5-μm-thick PZT film was prepared on Pt/Ti/SiO2/Si substrates. The film sample was shaped square pillar. The side electrode length (L) of square pillar shaped sample was ranged from 1000 μm to 10 μm. The relation between side electrode length and the transverse or the longitudinal displacements were investigated. With decreasing L, the transverse displacement decreased nonlinearly, and the longitudinal displacement increased nonlinearly. The finite element method (FEM) simulation suggests that the substrate clamped PZT film behaved nonlinearly. The effective -d 31 and d 33 were calculated from the measured displacement, and these values increase with decreasing L. The effective d 33 and -d 31 showed correlation, and the ratio was d 33 : -d 31 = 5.3 : 1 , whereas the bulk ratiois d 33 : -d 31 = 2.4 : 1.This result suggests that the substrate clamping effect of the transverse displacement was larger than that of the longitudinal displacement.



Hide All
1. Newnham, R. E., Properties of Materials, Anisotropy, Symmetry, Structure. (Oxford University Press, New York, 2005) p. 87.
2. Moulson, A. J., and Herbert, J. M., Electroceramics, Materials, Properties, Applications. 2nd ed. (Wiely, Chichester, 2003) p.344.
3. Lefki, K., and Dormans, G. J. M., J. Appl. Phys., 76, 1764 (1994).
4. Mckinstry, S. T., and Muralt, P., J. Electroceram., 12, 7 (2004).
5. Conway, N. J., Traina, Z. J., and Kim, S-G., J. Micromech. Microeng., 17, 781 (2007).
6. Chen, L., Li, J-H., Slutsker, J., Ouyang, J., and Roytbourd, A. L., J. Mater. Res., 19, 2853 (2004).
7. Barzegar, A., Damjanovic, D., Ledermann, N., and Muralt, P., J. Appl. Phys., 93, 4756 (2003).
8. Kholkin, A. L., Colla, E. L., Tagantsev, A. K., Taylor, D. V., and Setter, N., Appl. Phys. Lett., 68, 2577 (1996).
9. Kashiwagi, Y., Iijima, T., Nakajima, T., and Okamura, S., J. Ceram. Soc. Jpn., 118, 640 (2010).
10. Christman, J. A., Woolcott, R. R. Jr., Kingon, A. I., and Nemanich, R. J., Appl. Phys. Lett., 73, 3851 (1998).
11. Iijima, T., Ito, S., Matsuda, H., Jpn. J. Appl. Phys., 41. 6735 (2002).
12. Kanno, I., Kotera, H., Wasa, K., Sens. Actuators A, 107, 68 (2003).
13. Iijima, T., Osone, S., Shimojo, Y., Nagai, H., Int. J. Appl. Ceram. Technol., 3, 442 (2006).
14. Berlincourt, D. A., Cmolik, C., and Jaffe, H., Proc. IRE, 48, 220 (1960).
15. Yamamoto, T., Yamamoto, M., Nishida, K., Funakubo, H., Iijima, T., Aiso, T., and Ichikawa, Y., Jpn, J. Appl. Phys., 48, 09KA04 (2009).
16. Iijima, T., Kunii, K., Jpn. J. Appl. Phys., 40, 5740 (2001).
17. Okino, H., Hayashi, M., Iijima, T., Yokoyama, S., Funakubo, H., Setter, N., and Yamamoto, T., Mater. Res. Soc. Symp. Proc., 902E, 49 (2006).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed