Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-09T02:10:46.603Z Has data issue: false hasContentIssue false

MBE Growth of Epitaxial Calcium Fluoride on Silicon

Published online by Cambridge University Press:  26 February 2011

L. J. Schowalter
Affiliation:
General Electric Research and Development Center, P.O. Box 8, Schenectady, NT 12301; also
R. W. Fathauer
Affiliation:
School of Electrical Eng., Cornell university, Ithaca, NY 14853.
Get access

Abstract

The growth of an epitaxial insulator such as CaF2. on Si substrates and ita subsequent overgrowth with epitaxial sen iconduct ors have a number of important applications in the electronics industry. In addition, it presents a unique opportunity to study an insulator/semiconductor interface under controlled conditions. We have studied the growth of epitaxial CaF. on Si substrates and their subsequent overgrowth with Si or Ge under various conditions. While epitaxial growth of CaF2, (which has an fee lattice structure as does Si) can be obtained on (100), (110) and (111) oriented Si substrates, the best quality crystal growth and surface morphology is obtained on (111) substrates as the CaF. (111) surface has the lowest free energy. Atomic steps on the original Si substrate surface are shown to have a detrimental effect on the epitaxial growth of CaF2. I-V measurements on the epitaxial (111) films show that the intrinsic breakdown field strength exceeds 2 MV/cm, however, high-field induced ionization can cause thermal breakdown at lower voltages. C-V measurements typically show ∼1012 states/cm in the Si band gap as grown. However, it is possible to reduce this number to less than 10 by annealing procedures after growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schovalter, L. J. and Fathaner, R.W., to be published in J. Vac. Sci. Technol., Proc. 32nd Nat. symp. Am. Vac. Soc.Google Scholar
2. Farrow, R.F.C., Sullivan, P.W., Williams, G.M., Jones, G.R., and Carnerea, D.C., J. Vac. Sci. Technol. 19, 415 (1981).Google Scholar
3. Registry of Toxic Effects of Chemical Substances, Vol. 1. ed. Tstken, R.L. and Lewis, R.J. Sr, (U.S. Dept. of Health and Human Services, Cincinnati, 1983). p. 809.Google Scholar
4. Miller, A. and Manasevit, H.M., J. Vac. Sci. Technol. 3, 68 (1965).Google Scholar
5. Ishiwara, H. and Asano, T., Appl. Phys. Lett. 40, 66 (1982).Google Scholar
6. Smith, T.P. III, Phillips, Julia M., Augustyniak, W.M., and Stiles, P.J., Appl. Phys. Lett. 45, 907 (1984).Google Scholar
7. Asano, T., Kuriyana, Y., and Ishiwara, H., Elec. Lett. 21, 386 (1985);Google Scholar
Onoda, H., Katoh, T., Hirashita, N., and Sasaki, M., presented at the 1985 IEEE SOS/SOI Technology Workshop, Salt Lake City, Utah, October, 1985.Google Scholar
8. Zogg, H. and Huuppi, M., Appl. Phys. Lett. 47, 133 (1985).Google Scholar
9. Schowalter, L.J., Fathauer, R.W., Goehner, R.P., Turner, L.G., DeBlois, R.W., Hashimoto, S., Peng, J.-L., Gibson, W.M., and Krusius, J.P., J. Appl. Phys. 58, 302 (1985).Google Scholar
10. Schowalter, L.J., Fathauer, R.W., Turner, L.G., and Robertson, C.D., Mat. Res. Soc. Svmp. Proc. Vol. 37, ed. Gibson, J.M. and Dawson, L.R. (Materials Research Society, Pittsburgh, 1985), p. 151.Google Scholar
11. Fathauer, R.W. and Schowalter, L.J., Appl. Phys. Lett. 45, 519 (1984).Google Scholar
12. Phillips, Julia M., Pfeiffer, L., Joy, D.C., Smith, T.P. III, Gibson, J.M., Augustyniak, W.M., and West, K.W., in Proc. First Int. Svmp. Silicon Molecular Beam Epitaxy, ed. Bean, J.C. (The Electrochemical Society, Pennington, NJ, 1985), p. 296.Google Scholar
13. Tasker, P.W., Surface Science 78, 315 (1979).Google Scholar
14. Tasker, P.W., J. Physique 41, C6488 (1980).Google Scholar
15. Gilman, J.J., J. Appl. Phys. 31, 2208 (1960).Google Scholar
16. Benson, G.C. and Claxton, T.A., Can. J. Phys. 41, 1287 (1963).Google Scholar
17. Ponce, F.A., Anderson, G., Schowalter, L.J., and Fathauer, R.W., to be submitted to Appl. Phys. Lett.Google Scholar
18. Hoffman, R.A., Sinharoy, S., and Farrow, R.F.C., Appl. Phys. Lett. 47., 1068, 1985.Google Scholar
19. Tu, C.W., Wang, S.J., Phillips, J.M., Gibson, J.M., Stall, R.A., and Wunder, R.J., submitted to J. Vac. Sci. Technol.Google Scholar
20. Sugiyama, K., J. Appl. Phys. 56, 1733 (1984).Google Scholar
21. Gibson, J.M., Tung, R.T., Phillips, J.M., and Poate, J.M., in Materials Research Society Symp. Proc., vol. 25, edited by Baglin, J.E.E., Campbell, D.R., and Chu, W.K., (North-Holland, New York. 1984), pp. 405415.Google Scholar
22. Hashimoto, S., Peng, J.-L., Gibson, W.M., Schowalter, L.J., and Fathauer, R.W., Appl. Phys. Lett. 47, 1071 (1985).Google Scholar
23. Sze, S.M., Physics of Semiconductor Devices, 2nd Ed., (Wiley, New York, 1981), p. 403.Google Scholar
24. Schowalter, L.J., Fathauer, R.W., and Krusius, J.P., Proc. First Int. Symp. Silicon Molecular Beam Epitaxy, loc. cit., p. 311.Google Scholar