Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T21:29:11.663Z Has data issue: false hasContentIssue false

Materials Issues In X-Ray Mask Repair by Focused Ion Beams

Published online by Cambridge University Press:  15 February 2011

John Melngailis*
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139
Get access

Abstract

In x-ray mask repair high Z absorber features, such as gold or tungsten, must be removed or added. The main challenges are the small lateral dimensions (0.25 μm and below) and the thickness of the absorbers (˜ 0.5 μm) The focused ion beam appears to be the best tool developed to meet this challenge. Unwanted features are removed by ion milling while missing absorber is reconstructed using ion induced deposition from a locally piped-in precursor gas. The high aspect ratio of the features complicates both of these processes. Milling away 0.5 μm thick absorber can lead to redeposition of the sputtered material on neighboring features. The crystal grains of the absorber mill at different rates depending on orientation which results in nonuniform features. A possible alternative which only works with W absorber is to use ion assisted etching. In ion induced deposition a precursor gas such as dimethylgold hexafluoro acetylacetonate is provided by a capillary tube aimed at the region scanned by the ion beam. The incident Ga+ ions, usually at energies in the 25–100 keV range, dissociate the adsorbed precursor molecules leaving a deposit of gold mixed with carbon. The carbon content can approach 50 atomic % resulting in an x-ray attenuation which is about one half of that of pure gold. A number of unexplored materials science issues are associated with mask repair including: the reduction of the carbon content, redeposition both from milling and from induced deposition, milling as a function of crystal orientation and energy, and deposition of high aspect features. The technology is well enough developed so that mask repair of 0.25 μm features can be considered. However, a better understanding of the materials science aspects of x-ray mask repair will help to advance the state-of-the-art.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Electron beams have also been considered for x-ray mask repair, at least for deposition. See for example, Brünger, W., Microcircuit Engineering 9, 171 (1989). However, material removal especially of gold is more difficult. Tungsten removal by electron beam induced etching in the presence of a reactive gas might be feasible.CrossRefGoogle Scholar
[2] Stewart, D.K., Micrion Corp. Private commuriication.Google Scholar
[3] Atkinson, G.M., Stratton, F. P., and Kubena, R.L., J. Vac Sci. Technol. B10, 3104 (1992).CrossRefGoogle Scholar
[4] See for example: Chabala, J.M., Levi-Setti, R., and Wang, Y.L., J. Vac. Sci. Technol. B6, 910 (1988) or L.R. Harriott, and M.J. Vasile, J. Vac. Sci. Technol. B7, 181 (1989). Incidentally, SIMS can also be used for end-point detection.CrossRefGoogle Scholar
[5] Focused ion beam imaging can be used to see crystal grains:, Nikawa, K., J. Vac. Sci. Technol. B9, 2566, (1991); D.L. Barr, L.R. Harriott, and W.L. Brown, J. Vac. Sci. Technol. B10, 3120 (1992). See also Ref. [13].CrossRefGoogle Scholar
[6] Anderson, H.H., and Bay, H.L.Sputter Yield Measurements” in Sputtering by Particle Bombardment I, Physical Sputtering of Single Element Solids”, Behrisch, R. ed. Springer Verlag (Berlin-Heidelberg 1981) p. 145.CrossRefGoogle Scholar
[7] Xu, X., Ratta, A.D. Della, Sosonkina, J., and Melngailis, J., J. Vac. Sci. Technol. B10, 2675 (1992).CrossRefGoogle Scholar
[8] Yamaguchi, H., J. De Physique Colloque C6, Suppl. no. 11, tome 48 (Nov. 1987) p. C6165. Google Scholar
[9] Pellerin, J.G., Shedd, G.M., Griffis, D.P., and Russell, P.E., J. Vac. Sci. Technol. B7, 1810 (1989).CrossRefGoogle Scholar
[10] Müller, K.P. and Petzold, H.C., SPIE Vol.1263, 12 (1990).Google Scholar
[11] Blauner, P.G., Butt, Y., Ro, J.S., and Melngailis, J., J. Vac. Sci. Technol. D7, 609 (1989).Google Scholar
[12] Melngailis, J., Musil, C.R., Stevens, E.H., Urlaut, M., Kellogg, E.M., Post, R.J., Geis, M.W., and Mountain, R.W., J. Vac. Sci. Technol B4, 176 (1986).CrossRefGoogle Scholar
[13] Wagner, A., Levin, J.P., Mauer, J.L., Blauner, P.G., Kirsch, S.J., and Longo, P., J. Vac. Sci. Technol. B 8, 1557 (1990).CrossRefGoogle Scholar
[14] Ishitani, T. and Ohnishi, T., Japn J. of Appl. Phys. 28, L320 (1989), also J. Vac. Sci. Technol. A9, 3084 (1991).Google Scholar
[15] Müller, K.P., Japan. J. Appl. Phys. 28, 2348 (1989).CrossRefGoogle Scholar
[16] Dubner, A.D., Wagner, A., Melngailis, J., and Thompson, C.V., J. Appl. Phys. 70, 665 (1991).CrossRefGoogle Scholar
[17] Dubner, A.D., Ph.D. Thesis MIT (1991).Google Scholar
[18] Ro, J.S., Thompson, C.V., and Melngailis, J. (in preparation).Google Scholar
[19] Ro, J.S., Ph.D. Thesis MIT (1992).Google Scholar
[20] Xu, Z. Kosugi, T., Gamo, K., and Namba, S., J. Vac. Sci. Technol. B7, 1959 (1989).CrossRefGoogle Scholar
[21] Gamo, K. and Namba, S., Proc. 1989 Intern. Symp. on MicroProcess Conf. p. 293.Google Scholar
[22] Stewart, D.K., Stem, L.A., and Morgan, J.C., SPIE Symp. Proc. “Electron Beam X-ray and Ion Beam Technologies: Submicrometer Lithographies VIII” (Mar. 1989) Vol. 1089, p. 18.Google Scholar
[23] Tao, T., Wilkinson, W. and Melngailis, J., J. Vac. Sci. Technol. U 9,162 (1991).Google Scholar
[24] Madokoro, Y., Ohnishi, T., and Ishitani, T., Riken Conf. Mar. 1989.Google Scholar
[25] Blauner, P.G., Ro, J.S., Butt, Y., Thompson, C.V., and Melngailis, J., Mat. Res. Symp. Proc. Vol.129, p. 483 (1989).CrossRefGoogle Scholar
[26] Tao, T., Ro, J.S., Melngailis, J., Xue, Z., and Kaesz, H., J. Vac. Sci. Technol. B(Nov/Dec 1990). Also T. Tao private communication.Google Scholar
[27] Stewart, D.K., Stem, L.H., Foss, G., Hughes, G., Govil, P., SPIE Vol.1263, p 21 (1990).Google Scholar
[28] Stewart, D.K. and Doherty, J.A., 10th Annual Symp. on Microlithography Vol. 1496, p. 247 (Sept. 26, 27, 1990).CrossRefGoogle Scholar
[29] Blauner, P.G., Dubner, A.D., and Wagner, A., SPIE Symp. (San Jose, CA Mar. 1993) to be published.Google Scholar
[30] Takahashi, Y., Madokoro, Y., and Ishitani, T., Japn J. Appl. Phys. IQ, 3233 (1991).CrossRefGoogle Scholar
[31] Ro, J.S., Dubner, A.D., Thompson, C.V., and Melngailis, J., Mat. Res. Soc. Symp. Proc. Vol.101 p. 255 (1988).CrossRefGoogle Scholar
[32] Blauner, P.G., Ro, J.S., Butt, Y., Thompson, C.V., and Melngailis, J., Mat. Res. Soc. Symp. Proc. Vol.129 p. 483 (1989).CrossRefGoogle Scholar
[33] Dubner, A.D. and Wagner, A., J, Vac. Sci. Technol. B7, 1950 (1989).CrossRefGoogle Scholar
[34] Ro, J.S., Thompson, C.V., and Melngailis, J. (in preparation).Google Scholar
[35] Tao, T., Wilkinson, W., and Melngailis, J., J. Vac. Sci. Technol. 9, 162 (1991).CrossRefGoogle Scholar
[36] Stewart, D.K., Morgan, J.A., and Ward, B., J. Vac. Sci. Technol. 9, 2670 (1991).CrossRefGoogle Scholar
[37] Stewart, D.K., Olson, T., Ward, W., SPIE Symp. (San Jose, CA 1993) to be published.Google Scholar
[38] Ochici, Y., Gamo, K., Namba, S., Shihoyama, K., Jasuyama, A., Shiokawwa, T, and Toyoda., K. J. Vac. Sci. Technol. B5. 4223 (1987).Google Scholar
[39] Komuro, M. and Hiroshima., H. J. Vac. Sci. Technol. B9. 2656 (1991).CrossRefGoogle Scholar
[40] Xu, Z., Gamo, K., and Namba., S. J. Vac. Sci. Technol. B6. 1039 (1988).CrossRefGoogle Scholar
[41] Matsui, S., Takado, N., Tsuge, H., and Asakawa., K. Appl. Phys. Lett. 52, 69 (1988).Google Scholar
[42] Celler, G.K., Trimble, L.E., Frackoviale, J., Jurgensean, C.W., Kola, R.R., Novembre, A.E., and Weber., G.R. Appl. Phys. Lett. 59, 31105 (1991).CrossRefGoogle Scholar
[43] Ku, Y.C., Ng, L.P., Carpenter, R., Lu, K., Smith, H.I., Haas, L.E., and Plotnik., I J. Vac. Sci. Technol. B9, 3297 (1991)CrossRefGoogle Scholar
[44] Kola, R.R., Celler, G.K., and Harriott., L.R. Proc. of MRS, Symp. A. Beam-Solid Interactions: Fundamentals and Beam applications (Boston, Nov. 30 - Dec. 4, 1992) to be published.Google Scholar
[45] Harriott, L.R., Kola, R.R., and Celler., G.K. Proc. of SPIE, Electron-Beam. X-ray and Ion Beam Submicrometer. Lithographics for Manufacturing III (San Jose Feb. 28-Mar. 5, 1993) to be published.Google Scholar