Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T12:55:59.053Z Has data issue: false hasContentIssue false

Material and Device Properties of 3” Diameter GaAs-on-Si with Buried P-type Layers

Published online by Cambridge University Press:  26 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, UCLA, Los Angeles, CA 90024
K. M. Lee
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, UCLA, Los Angeles, CA 90024
N. M. Haegel
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, UCLA, Los Angeles, CA 90024
C.-J. Huang
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, UCLA, Los Angeles, CA 90024
S. Nakahara
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, UCLA, Los Angeles, CA 90024
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, UCLA, Los Angeles, CA 90024
V. Scarpelli
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, UCLA, Los Angeles, CA 90024
K. T. Short
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, UCLA, Los Angeles, CA 90024
S. M. Vernon
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01730
Get access

Abstract

Two problems facing MOCVD grown GaAs-on-Si are firstly, scale up to 3” and greater wafer diameter with acceptably uniform layer thicknesses and electrical and optical properties, and secondly the achievement of adequate device isolation through the use of buffer layers of low doping density (≤1014 cm−3). We have investigated the thickness uniformity and 300K photoluminescence intensity of 3” Ø, MOCVD grown GaAs layers on Si substrates by whole wafer mapping of these parameters, and correlate the variations found with the gas flow direction during deposition of the GaAs. We have overcome the high background doping densities (n =5−20 × 1015 cm2) in the material by a buried Be implant (1−5 × 1012 at 120 keV) followed by 850°C, 3 sec annealing. This provides adequate isolation for MESFETS and we fabricated such devices with gm's of 160-175 mS mm−1 using our standard process. These values are similar to homoepitaxial MESFETS fabricated in the same way.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Compare for example the mood of the papers in the first MRS symposium (Proc. Mat. Res. Soc. Symp. 67 (1986)) with those in the second symposium (Proc. Mat. Res. Soc. Symp. 91 (1987)).Google Scholar
2. Shaw, D. W., Proc. Mat. Res. Soc. Symp. 91 15 (1987).Google Scholar
3. Chand, N., Ren, F., Pearton, S. J., Shah, N. J., Cho, A. Y., IEEE Electron. Dev. Lett. EDL-8 185 (1987).Google Scholar
4. Lee, J. W., Salerno, J. P., Gale, R. P. and Fan, J. C. C., Proc. Mat. Res. Soc. Symp. 91 33 (1987).Google Scholar
5. Chand, N., Fischer, R., Sergent, A. M., Lang, D. V., Pearton, S. J. and Cho, A. Y., Appl. Phys. Lett. 51 1013 (1987)Google Scholar
6. Vernon, S. M., Haven, V. E., Tobin, S. P. and Wolfson, R. G., J. Cryst. Growth 77 530 (1986).Google Scholar
7. Solecon Laboratories, San Jose, CA 95131.Google Scholar
8. Lee, K. M. and Hollenhorst, J. N., TM 52324-880502-04 (1988).Google Scholar
9. Pearton, S. J., Malm, D. L., Heimbrook, L. A., Kovalchick, J., Abernathy, C. R., Caruso, R., Vernon, S. M. and Haven, V. E., Appl. Phys. Lett. 51 682 (1987).Google Scholar
10. Vernon, S. M. (private communication).Google Scholar
11. Hacksey, H. M., Brehm, G. E. and Matteson, S. E., IEEE Electron Dev. Lett. EDL-8 116 (1987).Google Scholar
12. Tan, K. L., Chung, H. K. and Chen, C. H., IEEE Electron. Dev. Lett. EDL-8 440 (1987).CrossRefGoogle Scholar