Skip to main content Accessibility help
×
Home

The Massively Parallel O[N] LSMS-Method: Alloy Energies and Non-Collinear Magnetism

  • G. M. Stocks (a1), Yang Wang (a1), D. M. C. Nicholson (a1), W. A. Shelton (a1), W. M. Temmerman (a2), Z. Szotek (a2), B. N. Harmon (a3) and V. P. Antropov (a3)...

Abstract

We present an overview of the locally self-consistent multiple scattering (LSMS) method. The method is based on real space multiple scattering theory, is naturally highly parallel, and has been implemented on Intel Paragon parallel platforms within the Center for Computational Sciences at Oak Ridge National Laboratory. O(N)-scaling is demonstrated for unit cells as large as 1000-atoms. We discuss in detail how the real space convergence properties of the method can be controlled by taking advantage of the stationary properties of a finite temperature Harris-Foulkes free energy functional. We show how the LSMS method can be combined with spin-dynamics to treat non-collinear magnetic states of materials. We show some preliminary results for the ground state magnetic structure of FCC Fe0.6 5Ni 0.35 alloys that indicate the possible existence of non-collinear arranges of magnetic moments in this system.

Copyright

References

Hide All
[1] Hohenberg, P. and Kohn, W., Phys. Rev. B136, 864 (1964).
[2] Kohn, W. and Sham, L.J., Phys. Rev. A140, 1133 (1965).
[3] Yang, W., Phys. Rev. Lett. 66, 1438 (1991); S. Baroni and P. Giannozzi, Europhys. Lett. 17, 547 (1992); G. Galli and M. Parrinello, Phys. Rev. Lett. 69, 3547 (1992); F. Mauri, G. Galli, and R. Car, Phys. Rev. B 47, 9973 (1993); X.-P. Li, R.W. Nunes, and D. Vanderbilt, Phys. Rev. B 47, 10891 (1993); M.S. Dow, Phys. Rev. B 47, 10895 (1993); W. Kohn, Chem. Phys. Lett. 208, 167 (1993); P. Ordejón, D.A. Drabold, M.P. Grumbach, and R.M. Martin, Phys. Rev. B 48, 14646 (1993); J.R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lett. 72, 1240 (1994); S. Goedecker and L. Colombo, Phys. Rev. Lett. 73, 122 (1994); E.B. Stechel, A.R. Williams, and P.J. Feibelman, Phys. Rev. B 49, 10088 (1994); F. Mauri and G. Galli, Phys. Rev. B 50, 4316 (1994); S.-Y. Qiu, C.Z.Wang, K.M. Ho and C.T. Chan, J. Phys.: Condens. Matter 6, 9153 (1994); E. Hernkà;ndez and M.J. Gillan, Phys. Rev. B 51, 10157 (1995); M. Aoki, in Hume Rothery Award Symposium for Professor David Pettifor: Structure and Phase Stability, edited by G. M. Stocks, C.T. Liu, and P.E.A. Turchi (TMS, Warrendale, Pennsylvania), to be published.
[4] Nicholson, D.M.C., Stocks, G.M., Wang, Y., Shelton, W.A., Szotek, Z., and Ternmerman, W.M., Phys. Rev. B 50, 14686, (1994)
[5] Wang, Y., Stocks, G.M., Shelton, W.A., Nicholson, D.M.C., Szotek, Z., and Ternmerman, W.M., Phys. Rev. Letters 75, 2867, (1995)
[6] Korringa, J., Physica 13, 392 (1947).
[7] Kohn, W. and Rostoker, N., Phys. Rev. 94, 111 (1954).
[8] Antropov, V.P., Katsnelson, M.I., van Schilfgaarde, M., and Harmon, B.N. Phys. Rev. Letters 75, 729, (1995)
[9] Wang, Yang, Stocks, G. M., and Faulkner, J. S., Phys. Rev. B49, 5028 (1994).
[10] Faulkner, J. S. and Stocks, G. M., Phys. Rev. B21, 3222 (1980).
[11] Györffy, B. L. and Stott, M. J., in Band Structure Spectroscopy of Metals and Alloys, edited by Fabian, D. J. and Watson, L. M. (Academic, New York, 1973), p. 385.
[12] Harris, J., Phys. Rev. B 31, 1770 (1985).
[13] Foulkes, W.M.C. and Haydock, R., Phys. Rev. B 39, 12520 (1985).
[14] Gillan, M.J., J. Phys. (Condens. Matter) 1, 689 (1989).
[15] Walker, C.B. and Keating, D.T., Phys. Rev. 130, 1726 (1963).
[16] Reinhard, L., Schönfeld, B., Kostorz, G., and Biihrer, W., Phys. Rev. B41, 1727 (1990).
[17] Andersen, O.K., Solid State Communications 13, 133 (1973).
[18] Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., and Kelley, K. K., Selected Values of Thermodynamics Properties of Binary Alloys, (American Society of Metals, Metals Park, Ohio, 1973), p. 816.
[19] Kowalski, M. and Spencer, P.J., J. Phase Equilibria 14, 432 (1993).
[20] Stocks, G.M., Temmerman, W.M., and Györfy, B.L., Phys. Rev. Letters 41, 339 (1978).
[21] Johnson, D.D. and Pinski, F.J., Phys. Rev. B 48, 11553 (1993).
[22] Faulkner, J.S., Wang, Yang, and Stocks, G.M., Phys. Rev. B, 52, 17106 (1995).
[23] Kubler, J., Snadratskii, L.M., and Uhl, M., J. Appl. Phys. 76, 6694 (1994).
[24] Lorenz, R. and Hafner, J., J. Mag. Mag. Mat. 139, 209 (1995).
[25] Kulikov, N.I. and Tugushev, V.V., Soy. Phys. Usp. 27, 954 (1984).
[26] Herpin, A., Meriel, P., and Villain, J., C. R. Acad. Sci. 249, 1334 (1959); J.M.D. Coey, Can. J. Phys. 65, 1210 (1987).
[27] Cowley, R.A., Cowlam, N., and Cussens, L.D., J. de Phy. (Colloque c8), 49, 1285 (1988)
[28] Cowley, R.A., Cowlam, N., Ivison, P.K., and Martinez, J., J. Mag. Mag. Mat. 104–107, 159 (1992).
[29] Hicks, T.J. and Moze, O., Phil. Mag. B 65, 1191 (1992).

The Massively Parallel O[N] LSMS-Method: Alloy Energies and Non-Collinear Magnetism

  • G. M. Stocks (a1), Yang Wang (a1), D. M. C. Nicholson (a1), W. A. Shelton (a1), W. M. Temmerman (a2), Z. Szotek (a2), B. N. Harmon (a3) and V. P. Antropov (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed