Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T12:23:29.743Z Has data issue: false hasContentIssue false

Market Readiness of Organic Photovoltaics for Building Integration

Published online by Cambridge University Press:  22 January 2014

Bas van der Wiel
Affiliation:
BELECTRIC OPV, Landgrabenstrasse 94, 90443 Nuremberg, Germany
Hans-Joachim Egelhaaf
Affiliation:
BELECTRIC OPV, Landgrabenstrasse 94, 90443 Nuremberg, Germany
Hermann Issa
Affiliation:
BELECTRIC OPV, Landgrabenstrasse 94, 90443 Nuremberg, Germany
Maria Roos
Affiliation:
Systems Engineering and Distribution Grids, Fraunhofer Institute for Wind Energy and Energy System Technology, Königstor 59, 34199 Kassel, Germany
Norbert Henze
Affiliation:
Systems Engineering and Distribution Grids, Fraunhofer Institute for Wind Energy and Energy System Technology, Königstor 59, 34199 Kassel, Germany
Get access

Abstract

If a photovoltaic (PV) technology is assessed today in a technical framework, then efficiency is the most commonly addressed parameter, followed by service lifetime. Cost, as the third parameter of the "magic triangle", is even less often reported. However, if a new technology is prepared to enter a market, other important parameters have to be considered, especially if non-standard PV applications are targeted.

Organic photovoltaic (OPV) is a well known but young PV technology of the so called third generation, which offers unique advantages for integrated products such as building integrated photovoltaics (BIPV). In this contribution we would like to highlight some of the advantages and challenges which are specific to the application of OPV in the field of building integration. Architectural design features of OPV include the ability to adapt semi-transparency, color and shape of the module. Moreover, glass-laminated OPV modules are deemed suitable for BIPV because of their ease of integration, good fire resistance, high energy harvest per nominal watt-peak and long lifetimes.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jelle, B.P., Breivik, C., Røkenes, H. D., Sol. Energy Mater. Sol. Cells 100 6996 (2012).CrossRefGoogle Scholar
Jelle, B.P., Breivik, C., Energy Procedia 20, 7887 (2012).CrossRefGoogle Scholar
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Prog. Photovolt: Res. Appl. 22, 19 (2014).CrossRefGoogle Scholar
BELECTRIC OPV GmbH, www.solarte.de (January 2014).Google Scholar
Sinapis, K., van den Donker, M., BIPV REPORT 2013” , www.seac.cc/fileadmin/seac/user/ doc/SEAC_BIPV_Report_2013.pdf (January 2014).Google Scholar
Steim, R., Ameri, T., Schilinsky, P., Waldauf, C., Dennler, G., Scharber, M., Brabec, C.J., Sol. Energy Mater. Sol. Cells 95, 32563261 (2011).CrossRefGoogle Scholar
Lungenschmied, C., Dennler, G., Neugebauer, H., Sariciftci, S.N., Glatthaar, M., Meyer, T., Meyer, A., Sol. Energy Mater. Sol. Cells 91, 379384 (2007).CrossRefGoogle Scholar
Schilinsky, P., Waldauf, C., Brabec, C.J., Appl. Phys. Lett. 81, 38853887 (2002).CrossRefGoogle Scholar
Riedel, I., Parisi, J., Dyakonov, V., Lutsen, L., Vanderzande, D., Hummelen, J.C., Adv. Funct. Mater. 14, 3844 (2004).CrossRefGoogle Scholar
Katz, E.A., Faiman, D., Tuladhar, S.M., Kroon, J.M., Wienk, M.M., Fromherz, T., Padinger, F., Brabec, C.J., Sariciftci, N.S., J. Appl. Phys. 90, 53445350 (2001).Google Scholar
Marsh, R.A., McNeill, C.R., Abrusci, A., Campbell, A.R., Friend, R.H., Nano Lett. 8, 13931398 (2008).CrossRefGoogle Scholar
Niggemann, M., Zimmermann, B., Haschke, J., Glatthaar, M., Gombert, A., Thin Solid Films 516, 71817187 (2008).CrossRefGoogle Scholar
Park, Y., Noh, S., Lee, D., Kim, J.Y., Lee, C., J. Korean Phys. Soc. 59, 362366 (2011).CrossRefGoogle Scholar
Bagienski, W., Gupta, M.C., Sol. Energy Mater. Sol. Cells 95, 933941 (2011).CrossRefGoogle Scholar
Garcia-Belmonte, G., Sol. Energy Mater. Sol. Cells 94, 21662169 (2010).CrossRefGoogle Scholar
Leo, K., “Recent progress in organic solar cells: From a lab curiosity to a serious photovoltaicTechnology”, www.easac.eu/fileadmin/docs/Low_Carbon/KVA_workshop/ Renewables/2013_09 _Easac_Stockholm_Leo.pdf (September 19-20, 2013).Google Scholar
Stability and Degradation of Organic and Polymer Solar Cells, edited by Krebs, F.C. (John Wiley & Sons, West Sussex, UK, 2012).CrossRefGoogle Scholar
Jørgensen, M., Norrman, K., Krebs, F.C., Sol. Energy Mater. Sol. Cells 92, 686714 (2008).CrossRefGoogle Scholar
Test report 21218088-1, TÜV Rheinland Energie und Umwelt GmbH (April 2012).CrossRefGoogle Scholar
DIN EN 13501–1 [2010-01] Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests.Google Scholar
Koleczko, A., Schmid, H. and Walschburger, E., Brandtechnische Grundlagen-Untersuchungen von Glas-Glas-Solarmodulen (PV-Verbundgläsern)“, presentation at the Fraunhofer Institute for Chemical Technology, Pfinztal, Germany.Google Scholar
Roos, M., Misara, S., Henze, N., presentation at the symposium 5. Anwenderforum Bauwerkintegrierte Photovoltaik in Bad Staffelstein (March 5, 2013).Google Scholar