Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T17:54:23.825Z Has data issue: false hasContentIssue false

Magnetofluorescent Hybrid Nanoparticles for Phototherapy of Cancer Cells

Published online by Cambridge University Press:  31 January 2011

Dickson K Kirui
Affiliation:
dk322@cornell.edu, Cornell University, Biomedical Engineering, 318, Stocking Hall, Ithaca, New York, 14850, United States
Carl A Batt
Affiliation:
cab10@cornell.edu, Cornell University, Food Science, Ithaca, New York, United States
Get access

Abstract

Magnetofluorescent hybrid nanoparticles consisting of Au layer, an iron oxide moiety, and fluorescent molecules could provide a promising platform for development of multimodal imaging and therapy approaches in the treatment of cancer. However, the feasibility of this platform has yet to be fully explored. In this study, we synthesized biocompatible dumbbell-like iron-gold hybrid particles that are superparamagnetic, fluorescent and with strong optical absorption. Furthermore, we showed that hybrid nanoparticles can be conjugated to targeting agents allowing for specific targeting of cancer cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lim, Y. T., Cho, M. Y., Lee, J. M. and Chung, B. H., Chem Commun, 49304932 (2008).10.1039/b810240fGoogle Scholar
2 Larson, T. A., Bankson, J., Aaron, J. and Sokolov, K., Nanotechnology 18, 325333 (2007).10.1088/0957-4484/18/32/325101Google Scholar
3 Landmark, K. J., Stassi, D., Ward, J., Kelly, C., Vogt, S., Hong, S., Kotlyar, A., Myc, A., Thomas, T. and Orr, B. G., AcsNano 2 (4), 773783 (2008).Google Scholar
4 Tartaj, P., Morales, M. P., Verdaguer, S. V., Carreno, T. G. and Serna, C. J., J phys D. Appl Phys 36, R182197 (2003).10.1088/0022-3727/36/13/202Google Scholar
5 Jun, Y. W., Huh, Y. M., Choi, J. S., H, L. J., Song, H. T., Kim, S., Yoon, S., Kim, K. S., Shin, J. and Cheon, J., J Am Chem Soc 127, 57325733 (2004).10.1021/ja0422155Google Scholar
6 Hadjipanayis, C. G., Bonder, M. J. and Hadjipanayis, G. G., Small 5, 15 (2008).Google Scholar
7 Yu, H., Chen, M., Rice, P. M., Wang, S. X.,White, W. R. L. and Sun, S., Nano Letters 5 (2), 379382 (2005).10.1021/nl047955qGoogle Scholar
8 Xu, C., Xie, J., Wang, C., Kohler, N., Walsh, E. G., Morgan, J., Chin, Y. E. and Sun, S., Angew. Chem Int 47, 173176 (2008).10.1002/anie.200704392Google Scholar
9 Wang, L., Maye, M. W., Fan, Q., Rendeng, Q. and Zhong, C., J Mater Chem 15, 18211832 (2005).10.1039/b501375eGoogle Scholar
10 Saini, G., D, S., Nagesha, D. K., Kautz, R., Sridhar, S. and Amiji, M., Nanotech NSTI Conference 1, 4549.Google Scholar
11 Yang, J., Elim, H. I., Zhang, Q., Lee, J. Y. and Ji, W., J Am Chem Soc 128, 1192111926 (2006).10.1021/ja062494rGoogle Scholar
12 Shi, W., Zeng, H., Sahoo, Y., Ohulchanskyy, T. Y., Ding, Y., Wang, Z. L. and Prasad, P. N., Nano Letters 6 (4), 875881 (2006).10.1021/nl0600833Google Scholar
13 Park, J. H., Maltzahn, G. V., Ruoslahti, E., Bhatia, S. N. and Sailor, M. J., Angew. Chem Int 47, 16 (2008).Google Scholar
14 Damasceno, L., Pla, I., Chang, H. J., Cohen, L., Ritter, G., Old, L. J. and Batt, C. A., Protein Expression and Purification 37, 1826 (2004).10.1016/j.pep.2004.03.019Google Scholar
15 Dubertret, B., Skourides, P., Norris, D. J., Noireaux, V., Brivanlou, A. H. and Libchaber, A., Science 298 (5599), 17591762 (2002).10.1126/science.1077194Google Scholar