Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T09:05:37.621Z Has data issue: false hasContentIssue false

Magnetic Properties of Nanoscale Iron Particles Photodeposited in Glass

Published online by Cambridge University Press:  15 February 2011

D. Sunil
Affiliation:
Dept of Chemistry, Queens College of CUNY Flushing, NY 11367.
H. D. Gafney
Affiliation:
Dept of Chemistry, Queens College of CUNY Flushing, NY 11367.
C. Tsang
Affiliation:
Dept of Physics, Queens College of CUNY Flushing N.Y. 11367.
M. H. Rafailovich
Affiliation:
Dept of Materials Sci.& Eng. SUNY at Stony Brook Stony Brook N.Y. 11794.
J. Sokolov
Affiliation:
Dept of Materials Sci.& Eng. SUNY at Stony Brook Stony Brook N.Y. 11794.
R. J. Gambino
Affiliation:
Dept of Materials Sci.& Eng. SUNY at Stony Brook Stony Brook N.Y. 11794.
D. M. Huang
Affiliation:
Bellcore, Red Bank N.J.07701.
Get access

Abstract

Transmission Electron Microscopy(TEM) and magnetization measurements were used to study the correlation between size of the iron particles precipitated in glass and their magnetic properties. The iron particles les s than 40 Å in diameter photodeposited in porous Vycor glass(PVG) show superparamagnetic behavior at room temperature. As the size of the particles increases and reaches about 100 Å in diameter, the magnetization curve shows minor hysteresis with a very large coercivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Ke, Sun, Ming-Xi, Ling, Luo He Lie Physica B 175,401(1991).Google Scholar
2) Montano, P. A., Zhao, J., Ramanathan, M., Shenoy, G. K., W.Schulze Physica B 158,242(1989).Google Scholar
3) Montano, P. A., Shenoy, G. K. Solid State Commu. 35,53(1980).Google Scholar
4) Kerznizian, C. F., Klabunde, K. J., Sorensen, C. M., Hadjipanayis, G. C. J.Appl.Phys 67,5897(1990).Google Scholar
5) Griscom, D. L., Friebele, E. J., Shinn, D. B. J.Appl.Phys. 50,2402(1979).Google Scholar
6) Chatelain, A., Buffat, P., Stadelmann, P., Weeks, R. A. J.Non.Cryst. Solids 71,335(1985).Google Scholar
7) Dormann, J. L., Cui, J. R., Sella, C. J.Appl.Phys 57,4283(1985).Google Scholar
8) Suzdalev, L. P., Imshennik, V. K. Nucl.Ins. and Methods 199,125(1982).Google Scholar
9) Borelli, N. F., Morse, D. L., Schreurs, J. W. H. J.AppI.Phys 54,3344(1983).Google Scholar
10) Ziolo, R. F., Giannelis, E. P., Weinstein, B. A., Horo, M. P. O., Ganuly, B. N., Mehrotra, V., Russel, M. W., Huffman, D. R. Science 257,219(1992).Google Scholar
11) Sunil, D., Sokolov, J., Rafailovich, M. H., Kotyuzhanskii, B., Gafney, H. D., Duan, X., Wilkens, B. J., Hanson, A. L J.Appl.Phys 74, 3768(1993).Google Scholar
12) Sunil, D., Sokolov, J., Rafailovich, M. H., Duan, X., Gafney, H. D. Inorganic Chemistry 32,4489(1993)Google Scholar
13) Mendoza, E. A., Wolkow, E., Sunil, D., wong, P., Sokolov, J., Rafailovich, M. H., Boer, M. den Gafney, H. D. Langmuir 7,3046(1991).Google Scholar
14) Liou, S. H., Chien, C. L. J.Appl.Phys 63,4240(1988).Google Scholar
15) Dorman, J. L., Gibart, P., Suran, G. and sella, C. Physica 86–88B, 1431(1977).Google Scholar
16) Xiao-Chien, G. Appl.Phys.Lett 51,1280(1987).Google Scholar