Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T16:15:30.819Z Has data issue: false hasContentIssue false

Magnetic Properties of 100 NM-Period Nickel Nanowire Arrays Obtained from Ordered Porous-Alumina Templates

Published online by Cambridge University Press:  17 March 2011

K. Nielsch
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
R.B. Wehrspohn
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
S.F. Fischer
Affiliation:
Max-Planck-Institute of Metal Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
H. Kronmüller
Affiliation:
Max-Planck-Institute of Metal Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
J. Barthel
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
J. Kirschner
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
U. Gösele
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
Get access

Abstract

Ni nanowires were grown in highly-ordered anodic alumina templates using pulsed electrodeposition. This technique yields completely metal-filled alumina membranes. The magnetic behavior of 100 nm period arrays of Ni nanowires with a length of 1 μ and different diameters has been characterized using SQUID magnetometry and magnetic force microscopy. Reducing the diameter from initially 50 to 25 nm while keeping the interwire distance constant leads to increasing coercive fields from 600 Oe to 1200 Oe and to increasing remanence from 30% to 100% of the hysteresis. The deposition of Ni65Fe35 gave a further improvement of the coercive fields up to 1350 Oe.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weller, D. and Moser, A., IEEE Trans. Magn., 35, 4423 (1999).Google Scholar
2. O'Barr, R., Yamamoto, S.Y., Schultz, S., Xu, W., and Scherer, A., J. Appl. Phys., 81, 4730 (1997).Google Scholar
3. Ross, C.A., Smith, H.I., Savas, T.A., Schattenberg, M., Farhoud, M., Hwang, M., Walsh, M., Abraham, M.C., and Ram, R.J., J. Vac. Sci. Technol., B 17, 3159 (1999).Google Scholar
4. Hwang, M., Abraham, M.C., Savas, T.A., Smith, H.I., Ram, R.J., and Ross, C.A., J. Appl. Phys., 87, 5108 (2000).Google Scholar
5. Raabe, J., Pulwey, R., Sattler, R., Schweinböck, T., Zweck, J., and Weiss, D., J. Appl. Phys., 88, 4437 (2000).Google Scholar
6. Nielsch, K., Müller, F., Li, A.P., and Gösele, U., Adv. Mater., 12, 582 (2000).Google Scholar
7. Li, A.P., Müller, F., and Gösele, U., Electrochem. Soc. Lett., 3, 131 (2000).Google Scholar
8. Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., and Tamamura, T., Appl. Phys. Lett. 71, 2770 (1997).Google Scholar
9. Masuda, H. and Fukuda, K., Science, 268, 1466 (1995).Google Scholar
10. Li, A.P., Müller, F., Birner, A., Nielsch, K., and Gösele, U., J. Appl. Phys., 84, 6023 (1998).Google Scholar
11. Wehrspohn, R.B., Li, A.P., Nielsch, K., Müller, F., Erfurth, W. and Gösele, U., The Electrochemical Society Proceedings Series, PV 2000–4, Pennington, NJ (2000), 271.Google Scholar
12. Nielsch, K., Wehrspohn, R.B., Barthel, J., Kirschner, J., Gösele, U., Fischer, S. F., and Kronmüller, H., submitted to Appl. Phys. Lett. Google Scholar
13. Hertel, R., unpublished resultsGoogle Scholar
14. Ounadjela, K., Ferré, R., Louail, L., George, J. M., and Maurice, J.L., Piraux, L., Dubois, S., J. Appl. Phys., 81, 5455 (1997).Google Scholar
15. Zheng, M., Menon, L., Zeng, H., Liu, Y., Bandyopadhyay, S., Kirby, R.D., and Sellmyer, D.J., Phys. Rev. B, 62, 12282 (2000).Google Scholar
16. Strijkers, G.J., Dalderop, J.H.J., Broeksteeg, M.A.A., Swagten, H.J.M., and Jonge, W.J.M. de, J. Appl. Phys, 86, 5141 (1999).Google Scholar