Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T10:23:37.007Z Has data issue: false hasContentIssue false

Magnetic Properties in Charge-Transfer Complexes of High-Symmetry Organic Acceptors

Published online by Cambridge University Press:  25 February 2011

Toyonari Sugimoto
Affiliation:
Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan
Eiji Murahashi
Affiliation:
Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan
Kaoru Ikeda
Affiliation:
Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan
Zen-Ichi Yoshida
Affiliation:
Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan
Hiroshi Nakatsuji
Affiliation:
Department of Synthetic Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan
Jun Yamauchi
Affiliation:
College of Liberal Arts and Science, Kyoto University, Yoshida, Kyoto 606, Japan
Yasushi Kai
Affiliation:
Department of Applied Chemistry, Osaka University, Yamadaoka, Osaka 565, Japan
Nobutami Kasai
Affiliation:
Department of Applied Chemistry, Osaka University, Yamadaoka, Osaka 565, Japan
Get access

Abstract

Tris(l, 2-benzodithio)- and tris(l, 2-ethylenedithio)-trimethylenemethane dication salts were synthesized for the purpose of using as an acceptor in the formation of charge-transfer (CT) complexes with some dianionic donors. In the CT complexes of these dications with hexacyanotrimethylenecyclopropane and tetrafluorotetracyanoquinodimethane dianions, in which the CT degree is albeit small, the spin-spin interaction between the cation radical and the anion radical was antiferro magnetic in the temperature range of 60–293 K, but changed to a ferromagnetic one in the lower temperature range till 15 K, the lowest temperature used in this experiment. This provides the first demonstration of ferromagnetic spin-spin interaction in purely organic/molecular CT complexes. It is conceivable that the ferromagnetic spin-spin interaction is caused by a“spin polarization”mechanism rather than a“CT configurational mixing”mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McConnell, H. M., Proc. R. A. Welch Found. Conf., 11, 144 (1967).Google Scholar
2. Miller, J. S., Calabrese, J. C., Bigelow, R. W., Epstein, A. J., Zhang, J. H., and Reiff, W. M., J. Chem. Soc., Chem. Commun., 1986, 1026;Google Scholar
Miller, J. S., Calabrese, J. C., Rommelmann, H., Chittipeddi, S., Zhang, J. H., Reiff, W. M., and Epstein, A. J., J. Am. Chem. Soc., 109, 769 (1987).Google Scholar
3. Breslow, R., Pure Appl. Chem., 54, 927 (1982).Google Scholar
4. See reviews: Weiss, F., Quart. Rev., 24, 278 (1970);Google Scholar
Dowd, P., Ace. Chem. Res., 5, 242 (1972);Google Scholar
Berson, J. A., Ace. Chem. Res., 11 446 (1978);Google Scholar
Dowd, P. and Chow, M., Tetrahedron, 38, 799 (1982).Google Scholar
5. Lahti, P. M., Rossi, A. R., and Berson, J. A., J. Am. Chem. Soc, 107, 2273 (1985), and references cited therein.Google Scholar
6. Wudl, F., Closs, F., Allemand, P. M., Cox, S., Hinkelmann, K., Srdanov, G., and Fite, C., Mol. Cryst. Uq. Cryst., 176, 249 (1989).Google Scholar
7. Sugimoto, T., Ikeda, K., and Yamauchi, J., Chem. Lett., 1991, 29.Google Scholar
8. Sugimoto, T., Murahashi, E., Ikeda, K., Nakatsuji, H., Yamauchi, J., Kai, Y., and Kasai, N., submitted for publication.Google Scholar
9. Adams, F., Gompper, R., Hohenester, A., and Wagner, H.-U., Tetrahedron Lett., 1988, 6921;Google Scholar
Gompper, R. and Wagner, H.-U., Angew. Chem., 100, 1492 (1988); Angew. Chem., Int. Ed. Engl, 27, 1437 (1988);Google Scholar
Closs, F., Breimaier, W., Frank, W., Gompper, R., and Hohenester, A., Synth. Metals, 29, E537 (1989).Google Scholar
10. Fukunaga, T., J. Am. Chem. Soc, 98, 610 (1976);Google Scholar
Fukunaga, T., Gordon, M. D., and Krusic, P. J., J. Am. Chem. Soc, 98, 611 (1976).Google Scholar
11. Miller, J. S., Epstein, A. J., and Reiff, W. M., Chem. Rev., 88, 201 (1988);Google Scholar
Miller, J. S., Epstein, A. J., and Reiff, W. M., Ace Chem. Res., 21, 114 (1988);Google Scholar
Miller, J. S., Epstein, A. J., and Reiff, W. M., Science, 240, 40 (1988).Google Scholar
12. Miller, J. S., Zhang, J. H., and Reiff, W. M., J. Am. Chem. Soc, 109, 4584 (1987);Google Scholar
Broderick, W. E., Thompson, J. A., Day, E. P., and Hoffman, B. M., Science, 249, 410 (1990);Google Scholar
Yee, G. T., Manriquenz, J. M., Dixon, D. A., McLean, R. S., Groski, D. M., Flippen, R. B., Narayan, K. S., Epstein, A. J., and Miller, J. S., Adv. Mater., 3, 309 (1991).Google Scholar
13. Broderick, W. E. and Hoffman, B. M., J. Am. Chem. Soc, 113, 6334 (1991).Google Scholar
14. Kollmar, C. and Kahn, O., J. Am. Chem. Soc, 113, 7987 (1991);Google Scholar
Kollmar, C., Couty, M., and Kahn, O., J. Am. Chem. Soc, 113, 7994 (1991).Google Scholar
15. McConnell, H. M., J. Chem. Phys., 39, 1910 (1963).Google Scholar