Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T10:14:55.742Z Has data issue: false hasContentIssue false

Magnetic Ordering of Mn Overlayers on Fe (100)

Published online by Cambridge University Press:  03 September 2012

T. G. Walker
Affiliation:
Department of Physics and Institute for Surface and Interface Science, University of California, Irvine, CA 92717
H. Hopster
Affiliation:
Department of Physics and Institute for Surface and Interface Science, University of California, Irvine, CA 92717
Get access

Abstract

Spin polarized electron energy loss spectroscopy (SPEELS) was used to probe the magnetic state of mn over layers on Fe (100). Nonzero exchange asymmetries are measured and found to oscillate with a two monolayer period as the mn overlayer thickness is varied, proving that the surface layer of the mn overlayers has a net magnetic moment and that these (100) Magnetic layers are aligned antiferromagnetically. The average exchange splitting of the mn surface layer is found to be 2.9 eV, indicating that the mn surface has a magnetic moment of the order 3 μg. In addition, oxidized mn overlayer surfaces have been studied, and the spectral features in the range 0 to 6 eV energy loss can be assigned to 3d-3d transitions of Mn2+. No indication of magnetic ordering of the MnO overlayer has been oserved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bruno, P. and Chappert, C., Phys. Rev. Lett. 67, 1602 (1991);Google Scholar
Baìtensperger, and Helman, J. S., Appl. Phys. Lett. 57, 2954 (1990);Google Scholar
Edwards, D. M., Mathon, J., Muniz, R. B., and Phan, M. S., Phys. Rev. Lett. 67, 493 (1991).Google Scholar
[2] Grunberg, P., Demokritov, S., Fuss, A., Schreiber, R., Wolf, J. A., and Purcell, S. T., J. Magn. Magn. Mater. 104, 1734 (1992);Google Scholar
Unguris, J., Celotta, R. J., and Pierce, D. T., Phys. Rev. Lett. 67, 140 (1991).Google Scholar
[3] Walker, T. G., Pang, A. W., Hopster, H., and Alvarado, S. F., Phys. Rev. Lett. 69, 1121 (1992).Google Scholar
[4] Unguris, J., Celotta, R. J., and Pierce, D. T., Phys. Rev Lett. 69, 1125 (1992).Google Scholar
[5] Walker, T. G. and Hopster, H., Submitted to Phys. Rev. B.Google Scholar
[6] Hopster, H. and Abraham, D. L., Phys. Rev. B 40, 7054 (1989); Phys. Rev. Lett. 62, 1157 (1989);Google Scholar
Venus, A. and Kirschner, J., Phys. Rev. B 37, 2199 (1988).Google Scholar
[7] Sugano, S., Tanabe, Y., and Kamimura, H., Multiplets of Transition-Metal Ions in Crystals (Academic Press, New York, 1970), p. 124.Google Scholar
[8] Jeng, S. and Henrich, V., Solid State Comm. 82, 879 (1992).Google Scholar
[9] Fujii, S., Ishida, S., and Asano, S., J. Phys. Soc. Jpn. 60, 1193 (1991).Google Scholar
[10] Tebble, R. S. and Craik, D. J., Magnetic Materials (Wiley, New York, 1969), pp 6163.Google Scholar
[11] Purcell, S. T., Johnson, M. T., McGee, N. W. E., Coehoorn, R., and Hoving, W., Phys. Rev. B 45, 13064 (1992).Google Scholar
[12] Oguchi, T. and Freeman, A. J., J. Magn. Magn. Mater. 46, L1 (1984).Google Scholar
[13] Yamashita, J., Asano, S., and Wakoh, S., J. Appl. Phys. 39, 1274 (1968).Google Scholar
[14] Shi, Z., Levy, P. M., and Fry, J. L., Phys. Rev. Lett. 69, 3678 (1992).Google Scholar