Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T16:16:16.041Z Has data issue: false hasContentIssue false

Magnetic Nanoparticle Arrays with Ultra-Uniform Length Electrodeposited in Highly Ordered Alumina Nanopores(“Alumite”)

Published online by Cambridge University Press:  17 March 2011

Robert M. Metzger
Affiliation:
Center for Materials for Information Technology and Departments of Chemistry and Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
Ming Sun
Affiliation:
Center for Materials for Information Technology and Departments of Chemistry and Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
Giovanni Zangari
Affiliation:
Center for Materials for Information Technology and Departments of Chemistry and Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
Mohammad Shamsuzzoha
Affiliation:
Center for Materials for Information Technology and Departments of Chemistry and Metallurgical and Materials Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
Get access

Abstract

We report nanometer-scale ordered arrays of cylindrical magnetic nanoparticles with low aspect ratio and ultra-high uniformity. Protracted anodization provides hexagonally ordered nanopores in amorphous Al2O3. For instance, pulsed electrochemical deposition grows Co particles of uniform length from the bottoms of these pores: these particles are polycrystalline and randomly oriented. The magnetism of the array is dominated by particle shape and by inter-particle magnetostatic interactions. A very clear transition of the anisotropy from perpendicular to in-plane is observed at a height to radius ratio of about 2. This pulse-reverse electrodeposition shows great promise for a reliable synthesis of uniform nanostructures of many metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] New, M. H., Pease, R. F. W., and White, R. L., J. Vac. Sci. Technol. B12: 3196 (1994).Google Scholar
[2] White, R. L., New, R. M. H., and Pease, R. F. W., IEEE Trans. Magn. 33: 990 (1997).Google Scholar
[3] Chou, S. Y., Wei, M. S., Krauss, P. R., and Fischer, P. B.,J. Appl. Phys. 76: 6673 (1994).Google Scholar
[4] Ross, C. A., Smith, H. I., Savas, T., Schattenburgh, M., Farhoud, M., Hwang, M., Walsh, M., Abraham, M.C., and Ram, R. J., J. Vac. Sci. Technol. B17: 3168 (1999).Google Scholar
[5] Hughes, G. F., IEEE Trans. Magn. 36: 521 (2000).Google Scholar
[6] Masuda, H. and Fukuda, K., Science 268: 1466 (1995).Google Scholar
[7] Konovalov, V. V., Metzger, R. M., and Zangari, G., in Electrochemical Technology Applications in Electronics, Vol. PV 99–34 (The Electrochemical Society, Pennington, NJ, 2000) p. 203.Google Scholar
[8] Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., and Tamamura, T., Appl. Phys. Lett. 71: 2770 (1997).Google Scholar
[9] Li, F., Zhang, L., and Metzger, R. M., Chem. Mater. 10: 2470 (1998).Google Scholar
[10] Jessensky, O., Müller, F., and Gösele, U., Appl. Phys. Lett. 72: 1173 (1998).Google Scholar
[10] Metzger, R. M., Konovalov, V. V., Sun, M., Xu, T., Zangari, G., Xu, B., Benakli, M., and Doyle, W. D., IEEE Trans. Magn. 36: 30 (2000).Google Scholar
[11] Sun, M., Zangari, G., Shamsuzzoha, M., and Metzger, R. M., in preparation.Google Scholar
[12] O'M, J., , Bockris and Reddy, A. K. N., Modern Electrochemistry, Vol. 1 (2nd Ed., Plenum, New York, NY, 1998), p. 370.Google Scholar
[13] Aharoni, A., IEEE Trans. Magn. 22: 478 (1986).Google Scholar