Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-24T22:32:08.031Z Has data issue: false hasContentIssue false

Magnetic Material Arrangement In A pis Mellifera Abdomens

Published online by Cambridge University Press:  01 February 2011

Darci M. S. Esquivel
Affiliation:
Centro Brasileiro de Pesquisas Físicas, R. Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil.
Eliane Wajnberg
Affiliation:
Centro Brasileiro de Pesquisas Físicas, R. Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil.
Geraldo R. Cernicchiaro
Affiliation:
Centro Brasileiro de Pesquisas Físicas, R. Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil.
Daniel Acosta-Avalos
Affiliation:
Pontifícia Universidade Católica do Rio de Janeiro R Marques de S Vicente 225, 22453-970, Rio de Janeiro, Brazil.
B.E. Garcia
Affiliation:
Centro Brasileiro de Pesquisas Físicas, R. Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil.
Get access

Abstract

Honeybees are the most studied insects in the magnetic orientation research field. Experiments on the magnetic remanence of honeybees have shown the presence of magnetite nanoparticles, aligned transversely to the body axis on the anterodorsal abdomen horizontal plane. These results support the hypothesis of ferromagnetic sensors for the magnetoreception mechanism. An Electron Paramagnetic Resonance (EPR) study identified isolated magnetite nanoparticles and aggregates of these particles with a low temperature transition (52 K – 91 K). Hysteresis curves of Apis mellifera abdomens organized parallel and perpendicular to the applied magnetic field were obtained from 5K to 310K. At low temperatures, the hysteresis curves indicate a preferential orientation of the magnetic easy axis parallel to the body axis. The saturation (Js) and remanent (Jr) magnetizations, coercive field (Hc) and initial susceptibility (Ψ) were obtained. Results were interpreted based on the presence of magnetite nanoparticles with 50 K and 120 K mean blocking temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vacha, M., Biologia Bratislava 52, 629 (1997).Google Scholar
2. Gould, J. L., Kirschvink, J. L. and Deffeyes, K. S., Science 201, 1026 (1978).Google Scholar
3. Kirschvink, J. L., Bioelectromagnetics 10, 239 (1989).Google Scholar
4. Gould, J. L., Kirschvink, J. L., Deffeyes, K. S. and Brines, M. L., J. Exp. Biol. 80, 1 (1980).Google Scholar
5. Kirschvink, J. L.., Kuwajima, T., Ueno, S., Kirschvink, S. J., Diaz-Ricci, J., Morales, A., Barwig, S. and Quinn, K. J., in Sensory Transduction (The Rockefeller University Press N.Y., 1992) chap.14, 227.Google Scholar
6. El-Jaick, L. J., Acosta-Avalos, D., Esquivel, D. M. S., Wajnberg, E. and Linhares, M. P., Eur. Biophys. J. 29, 579, (2001).Google Scholar
7. Takagi, S., J. Phys. Soc. Japan 64, 4378, (1995)Google Scholar
8. Towne, W. F. and Gould, J. L., in Magnetite Biomineralization and Magnetoreception in Organisms (Plenum Press, N. York, 1985) chap. 18, 385.Google Scholar
9. Loffler, J. F., Meier, J. P., Doudin, B., Ansermet, J. P. and Wagner, W., Phys. Rev. B 57, 2915, (1998).Google Scholar