Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T05:15:06.459Z Has data issue: false hasContentIssue false

Magnetic Anisotropy in La0.7(Sr,Ca)0.3MnO3 Epitaxial Thin Films And Crystals

Published online by Cambridge University Press:  10 February 2011

K. Steenbeck
Affiliation:
Institut f. Physikalische Hochtechnologie e.V., Jena, PF 100239 D-07702 Jena, Germany
R. Hiergeist
Affiliation:
Institut f. Physikalische Hochtechnologie e.V., Jena, PF 100239 D-07702 Jena, Germany
A. Revcolevschi
Affiliation:
Laboratoire de Chimie des Solides, Université Paris-Sud, 91405 Orsay Cedex, France
L. Pinsard-Gaudart
Affiliation:
Laboratoire de Chimie des Solides, Université Paris-Sud, 91405 Orsay Cedex, France
Get access

Abstract

The biaxial and uniaxial magnetic anisotropies of epitaxial { 100} oriented La0.7(Sr,Ca)0.3MnO3 films on different substrates and of a sphere-shaped single crystal were measured by torque magnetometry at temperatures ranging from T = 20K to room temperature. In the films the biaxial anisotropy with easy axes <110= dominates and is described by a cubic crystal anisotropy constant ranging up to K1 ≈−104J/m3. The uniaxial anisotropy was |Ku| ≤ 103 J/m3 and is explained by anisotropic stress. In the single crystal the main anisotropy is uniaxial with a hard axis parallel to [ 111], and with an anisotropy constant KR up to 104J/m3. KR was measured in different planes and explained by the rhombohedral lattice distortion. The biaxial anisotropy in the crystal (K1 = −103 J/m3 at T = lOOK) was smaller than in the films. Differences between film and single crystalline behaviour are discussed in terms of crystal structure and lattice constriction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Steenbeck, K., Eick, T., Kirsch, K., Schmidt, H.-G., and Steinbeiβ, E., Appl. Phys. Lett. 73, 2506 (1998).Google Scholar
2 Isaac, S. P., Mathur, N. D., Evetts, J. E., and Blamire, M. G., Appl. Phys. Lett. 72, 2038 (1998).Google Scholar
3 Suzuki, Y., Hwang, H. Y., Cheong, S-W., Siegrist, T., van Dover, R. B., Asamitsu, A., and Tokura, Y., J. Appl. Phys. 83, 7064 (1998).Google Scholar
4 Suzuki, Y., Hwang, H. Y., Cheong, S-W., van Dover, R. B., Asamitsu, A., and Tokura, Y., Mater. Res. Soc. Symp. Proc. 494, 41 (1998).Google Scholar
5 Lecoeur, P., Trouilloud, P. L., Gang, Xiao, Gupta, A., Gong, G. Q., and Li, X. W., J. Appl. Phys. 82, 3934 (1997).Google Scholar
6 Hergt, R., Andrä, W., Fischer, K., Chebotayev, N. M., and Town, S. L., phys. stat. sol.(a), 119, 241 (1990).Google Scholar
7 Revcolevschi, A. and Collongues, R., Séances, C. R. Acad. Sci., Ser. A 266 1797 (1969).Google Scholar
8 Kneller, E., Ferromagnetismus (Springer, Berlin, 1962), p. 181 and p. 234.Google Scholar