Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T17:16:37.241Z Has data issue: false hasContentIssue false

Magnetic and Transport Properties of Ferromagnetic-PEEK Polymer Nanocomposite Prepared via Ion-Implantation

Published online by Cambridge University Press:  01 February 2011

K. Ghosh
Affiliation:
Department of Physics, Astronomy and Materials Science, Southwest Missouri State University, Springfield, MO 65804, U. S. A. Center for Applied Science and Engineering, Southwest Missouri State University, Springfield, MO 65804, U. S. A.
S. R. Mishra
Affiliation:
The Department of Physics, The University of Memphis, Memphis, TN 38152, U. S. A.
J. Losby
Affiliation:
The Department of Physics, The University of Memphis, Memphis, TN 38152, U. S. A.
T. Kehl
Affiliation:
Department of Physics, Astronomy and Materials Science, Southwest Missouri State University, Springfield, MO 65804, U. S. A.
B. Robertson
Affiliation:
Department of Physics, Astronomy and Materials Science, Southwest Missouri State University, Springfield, MO 65804, U. S. A.
T. Kassim
Affiliation:
Department of Physics, Astronomy and Materials Science, Southwest Missouri State University, Springfield, MO 65804, U. S. A.
R. Patel
Affiliation:
Center for Applied Science and Engineering, Southwest Missouri State University, Springfield, MO 65804, U. S. A.
M. Weigand
Affiliation:
Department of Physics, Astronomy and Materials Science, Southwest Missouri State University, Springfield, MO 65804, U. S. A.
M. Curry
Affiliation:
Center for Applied Science and Engineering, Southwest Missouri State University, Springfield, MO 65804, U. S. A.
R. E. Giedd
Affiliation:
Center for Applied Science and Engineering, Southwest Missouri State University, Springfield, MO 65804, U. S. A.
Get access

Abstract

Thin films of magnetic-nanocomposite are prepared using a novel two step ion-implantation technique. Structural assessment via TEM of the ion bombarded iron-polymer composite shows development of fine magnetic nanoparticles (20–50 A) in a carbonaceous matrix. The experimental temperature dependence of conductivity of the composite, in the temperature range 10–300 K, follows the exponential law σ = σo exp [(-To/T)γ], where To and γ are constants. The observed higher values of γ > 1 imply the presence of more than one conducting channel in the composite. The secondary conducting channels, beside hopping conductivity, may arise from the conducting graphitic matrix around Fe nanoparticles. The room temperature magneto-transport measurement indicates a 0.5% change in magnetoresistance at 0.5T field. The observed anomalous Hall voltage confirms the presence of magnetic nature of nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bate, G., Schofield, D., and Sucksmith, W., in “Soft Magnetic Materials for Telecommunications,” Eds. Richards, C. E. and Lynch, A. C. (Pergamon Press, New York, 1953)Google Scholar
2. Abeles, B., Sheng, P., Couts, M. D., and Arie, Y., Adv. Phys. 24, 407 (1975).Google Scholar
3. Ping, Sheng, Phys. Rev. B 31, 4906 (1985).Google Scholar
4. Mulykov, Kh. Ya., Sharipov, I. Z., and Nikitin, S. A., Phys. Met. And Metallo. 81, 167 (1996).Google Scholar
5. Klein, L. C. in “Nanomaterials: Synthesis, Properties and Applications,” Eds. Edelstein, A. S. and Cammarata, R. C., Institute of Physics Publishing, Bristol, PA (1996).Google Scholar
6. Pilai, V. and Shah, D. O., Magn, J.. Mag. Mater. 163, 243 (1996).Google Scholar
7. van Wonterghem, J., Morup, S., Koch, C. J. W., Charles, S. W., and Wells, S., Nature 322, 622 (1986); J. de Phys. C 8, 1369 (1989).Google Scholar
8. Nafis, S.. Hadjipanayis, G. C., Sorensen, C. M., and Klabunde, K. J., IEEE Trans. Magn. Mag. MAG–25, 3641 (1989).Google Scholar
9. Slade, S. B., Berkowitz, A. E., and Parker, F. T., J. Appl. Phys. 69, 5127 (1991).Google Scholar
10. Berkowitz, A. E., Walter, J. L., and Wall, K. F.. Phys. Rev. Lett. 46, 1484 (1981).Google Scholar
11. Kodama, R. H. et al, “Nanophase Materials-Synthesis, properties, Applications” Eds. Hadjipanayis, G. C., and Siegel, R. W.. NATO ASI Series 260, 101 (1994).Google Scholar
12. Gilman, P. S. and Benjamin, J.S.. Ann. Rev. Mater. Sci. 13, 279 (1983).Google Scholar
13. Paradavi-Hovarth, M. and Takacs, L., IEEE Trans. Magn. MAG–28 3186 (1992).Google Scholar
14. Yanixa Lu, Reno, R. C., and Tackacs, L., in “Nanophase and Nanocomposite Materials,” Eds. Komaranemi, S., Parker, J. C., and Thomas, G. J., Mat. Res. Soc. Symp. Proc. Vol 286 (Pittsburg, 1993) p.413.Google Scholar
15. Paradavi-Hovarth, M. and Tackacs, L., J. Appl. Phys. 75, 5864 (1994).Google Scholar
16. Sheng, P. and Abeles, B., Phys. Rev. Lett. 31, 44 (1973);Google Scholar
Sheng, P. and Klafter, J., Phys. Rev. B 27, 2583 (1983).Google Scholar
17. Flouttard, J. L., Akinnifesi, J., Cambril, E., and Despax, B., J. Appl. Phys. 70, 798 (1991).Google Scholar
18. Berkowitz, A. F. et al, Phys. Rev. Lett. 68, 3745 (1992).Google Scholar