Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T15:52:02.870Z Has data issue: false hasContentIssue false

Magnetic and Electronic Properties of n-type (Al,Ga) co-doped Zn(Cu)O based Dilute Magnetic Semiconductors

Published online by Cambridge University Press:  01 February 2011

Deepayan Chakraborti
Affiliation:
dchakra@ncsu.edu, North Carolina State University, Materials Science and Engineering, Room#3030,Engineering Bldg-I,, 911 Partners Way, Raleigh, NC, 27606, United States, 919-515-7219, 919-515-7724
John T. Prater
Affiliation:
john.t.prater@us.army.mil, North Carolina State University, Materials Science and Engineering, Raleigh, NC, 27606, United States
Jagdish Narayan
Affiliation:
j_narayan@ncsu.edu, North Carolina State University, Materials Science and Engineering, Raleigh, NC, 27606, United States
Get access

Abstract

Systematic studies on the epitaxial growth and the effect of n-type (Al,Ga) doping on the magnetic and electrical properties of 2.0 % Cu doped ZnO dilute magnetic semiconducting thin films deposited on c-plane sapphire single crystals by pulsed laser deposition are reported here. An decrease in more than 3 orders of magnitude in resistivity from 2×101 Ohm cm for the 2.0 % Cu doped ZnO to ~5×10-3 Ohm cm for Al and Ga codoped films is observed. This increase in conductivity does not show any effect on ferromagnetic ordering thus contradicting the claim of free carrier mediated exchange as being responsible for ferromagnetic ordering in these DMS systems. A bound magnetic polaron or F-center mediated exchange is a possible explanation for the origin of ferromagnetism in these ZnO based DMS thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000)Google Scholar
2. Ueda, K., Tabata, H., and Kawai, T., Appli. Phys. Lett. 79, 988 (2001)Google Scholar
3. Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005)Google Scholar
4. Pearton, S.J., Heo, W.H., Ivill, M., Norton, D.P., and Steiner, T., Semicond. Sci. Technol. 19, R59 (2004)Google Scholar
5. Sato, K. and Katayama-Yoshida, H., Jpn J. Appl. Phys., Part 2 39, L555 (2000)Google Scholar
6. Chakraborti, D., Narayan, J., and Prater, J.T., Appl. Phys. Lett. 90, 062504 (2007)Google Scholar
7. Mondragón-Suárez, H., Maldonado, A., Olvera, M. de la L., Reyes, A., CastanedoPérez, R., Torres-Delgado, G., and Asomoza, R., Applied Surface Science 193, 52 (2002)Google Scholar
8. Bhosle, V., Tiwari, A., and Narayan, J., J. Appl. Phys. 100, 033713 (2006)Google Scholar
9. Lee, H.-J., Jeong, S.-Y., Cho, C.R., and Park, C.H., Appl Phys. Lett. 81, 4020 (2002)Google Scholar
10. Coey, J.M.D, Douvalis, A.P, Fitzgerald, C.B and Venkatesan, M., Appl. Phys. Lett, 84, 1332(2004)Google Scholar
11. Chambers, S.A., Droubay, T., Wang, C.M., Lea, A.S., Farrow, R.F.C., Folks, L., Deline, V., and Anders, S., Appl. Phys. Lett. 82, 1257 (2003)Google Scholar
12. Prater, J.T., Ramachandran, S., Tiwari, A., and Narayan, J., J. Elec. Mater. 35, 852 (2006)Google Scholar
13. Ramachandran, S., Narayan, J., and Prater, J.T., Appl. Phys. Lett. 90, 132511(2007)Google Scholar
14. Bhatt, R.N., Berciu, M, Kennett, M.P. and Win, X., J. of Superconductivity 15, 71(2002)Google Scholar