Skip to main content Accessibility help

Luminescent Nanometer-Sized Si Crystals Formed in an amorphous Silicon Dioxide Matrk by Ion Implantation and Annealing

  • T.S. Iwayama (a1), Y. Terao (a1), A. Kamiya (a1), M. Takeda (a1), S. Nakao (a2) and K. Saitoh (a2)...


Si ion implantation followed by thermal annealing has been used to synthesize luminescent nanometer-sized Si crystals in an amorphous Si02 matrix. Transmission electron microscopy indicates the formation of Si nanocrystals by annealing at 1100 °C, and the growth in average size of Si nanocrystals with increasing annealing time. the shape of the emission spectrum of the photoluminescence is found to be independent of both excitation energy and annealing time, while the excitation spectrum of photoluminescence increases as the photon energy increases and its shape depends on annealing time. the results indicate that the photons are absorbed by Si nanocrystals, for which the band-gap energy is modified by the quantum confinement effects, and the emission of photons is not due to direct electron-hole recombination inside Si nanocrystals but is related to defects probably at the interface between Si nanocrystals and Si02.



Hide All
1 Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).
2 Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).
3 DiMaria, D.J., Kirtley, J.R., Pakulis, E.J., Dong, D.W., Kuan, T.S., Pesavento, F.L., Theis, T.N., and Cutro, J.A., J. appl. Phys. 56, 401 (1984).
4 Furukawa, S. and Miyasato, T., Jpn. J. appl. Phys. 27, L2207, (1988).
5 Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).
6 Morisaki, H., Ping, F.W., H. ono, and Yazawa, K., J. appl. Phys. 70, 1869 (1991).
7 Hayashi, S., Nagareda, T., Kanzawa, Y., and Yamamoto, K., Jpn. J. Appl. Phys. 32, 3840 (1993).
8 Ziegler, J.F., Ion Implantation Technology, Ziegler, J.F. (ed.) p. 1 (North-Holland, Amsterdam, 1992).
9 Becker, K., Yang, L., Haglund, R.F. Jr, Magruder, R.H., Weeks, R.A., and Zuhr, R.A., Nucl. INstrum. Methods B59/60, 1304 (1991).
10 Hosono, H., Abe, Y., Y.Lee, L., Tokizaki, T., and Nakamura, A., Appl. Phys. Lett. 61, 2747 (1992).
11 Takeda, Y., Hioki, T., Motoshiro, T., and Noda, S., Appl. Phys. Lett. 63, 3420 (1993).
12 Shimizu, T.-Iwayama, Ohshima, M., Niimi, T., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Phys.: Condens. Matter 5, L375 (1993).
13 Atwater, H.A., Shcheglov, K.V., Wong, S.S., Vahala, K.J., Flagan, R.C., Brongersma, M.L., and A. Polman, Mat. Res. Soc. Symp. Proc. 316, 409 (1994).
14 Shimizu, T.-Iwayama, Fujita, K., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. appl. Phys. 75, 7779 (1994).
15 Itoh, N., Shimizu-Iwayama, T., and Fujita, T., J. Non-cryst. Solids 179, 194 (1994).
16 Shimizu, T.-Iwayama, Nakao, S., and Saitoh, K., Appl. Phys. Lett. 65, 1814 (1994).
17 Shimizu-Iwayama, T., Nakao, S., Saitoh, K., and Itoh, N., Phys, J..: Condens. Matter 6, L601 (1994).
18 Shimizu-Iwayama, T., Nakao, S., and Saitoh, K., J, Jpn.. Appl. Phys. Suppl. 34–1, 86 (1995).
19 Ziegler, J.F., Biersack, J.P., and U.Littmark, , The Stopping and Range of Ions in Solids vol.1 (Pergamon, New York, 1985).
20 Takagahara, T. and Takeda, K., Phys. Rev. B46, 15578 (1992).
21 Griscom, D.L., Proc. 3rd int. Frequency Control Symposium p.98 (Electronic industries association, Washington D.C., 1979).
22 Trukhin, A.N., Sov. Phys. Solid State 21, 644 (1979).
23 Itoh, C., Tanimura, K., Itoh, N., and Itoh, M., Phys. Rev. B 39, 11183 (1989).
24 Shluger, A.L., J. Phys. C 21, L432 (1988).
25 Shluger, A. and Stefanovich, E., Phys. Rev. B 42, 9664 (1990).
26 Itoh, N., Tanimura, K., and Itoh, C., The Physics and Technology of a morphous Si02 , Devine, R.A.B. (ed.) p. 135 (Plenum, New York, 1988).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed