Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T00:48:18.966Z Has data issue: false hasContentIssue false

Luminescence Properties of Pulsed Laser Deposited Eu:Y2O3 Thin Film Phosphors on Sapphire Substrates

Published online by Cambridge University Press:  15 February 2011

K.G. Cho
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611Email: rsing@mse.ufl.edu
D. Kumar
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611Email: rsing@mse.ufl.edu
P. H. Holloway
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611Email: rsing@mse.ufl.edu
R. K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611Email: rsing@mse.ufl.edu
Get access

Abstract

Eu:Y2O3 phosphor films were deposited on (0001) sapphire substrates using 248 nm KrF pulse laser to investigate microstructure-property correlations. A slow film growth (60 nm/min) process results in predominantly (222) orientation while a fast film growth (170 nm/min) process results in predominantly (400) orientation of Eu:Y2O3 film. With an increase in film thickness from 0.6μm to 1.2μm, a 300% increase in brightness has been achieved from Eu:Y2O3 films. An increase in substrate temperature during deposition from 700°C to 800°C resulted in ~40% brighter films. Improvement in brightness from Eu:Y2O3 films with the film thickness may be attributed to an increase in roughness while that from substrate temperature may be attributed to a combined effect of increased roughness and improved crystallinity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Forest, H., and Ban, G., J. Electrochem. Soc. 116 (4), 474 (1969).Google Scholar
2. Anderson, R.C., High Temperature Oxide Part II, in Refractory Materials, edited by Alper, A. M., Academic Press, New York, p. 1 (1970).Google Scholar
3. Jollet, F., Noguera, C., Thromat, N., Gautier, M., and Duraud, J.P., Physical Review B 42 (12), 7587 (1990).Google Scholar
4. Onisawa, K.-I., Fuyama, M., Tamura, K., Taguchi, K., Nakayama, T., and Ono, Y.A., J. Appl. Phys. 68 (2), 719 (1990).Google Scholar
5. Schaik, W.V., and Blasse, G., Chem. Mater. 4 (2), 410 (1992).Google Scholar
6. Blasse, G., and Grabmaier, B.C., Luminescent Materials (Springer, Berlin, 1994).Google Scholar
7. Jones, S.L., Kumar, D., Singh, R.K., and Holloway, P.H., Appl. Phys. Lett. 71 (3), 404 (1997).Google Scholar
8. Marshall, D.J., Cathodoluminescence of Geological Materials (Unwin Hyman, Boston, 1988), p.10.Google Scholar
9. Pappalardo, R.G., and Hunt, R. B. Jr., J. Electrochem. Soc. 132 (3), 721 (1985).Google Scholar
10. Ozawa, L., Cathodoluminescence:theory and applications, VCH, New York (1990).Google Scholar
11. Hersh, H.N. and Forest, H., J. of Luminescence 1–2, 862 (1970).Google Scholar
12. Hirata, G.A., Mckittrick, J., Avalos-Borja, M., Siqueiros, J.M., and Devlin, D., Applied Surface Science 113/114, 509 (1997).Google Scholar
13. Cho, K.G., Kumar, D., Lee, D.G., Jones, S.L., Holloway, P.H., and Singh, R.K., Appl. Phys. Lett. 71 (23), 3335 (1997).Google Scholar
14. Riedel, E. P., J. of Luminescence 1–2, 176 (1970).Google Scholar
15. Ropp, R.C., J. Opt. Soc. Amer. 57, 213 (1967).Google Scholar
16. Maestro, P., Huguenin, D., Seigneurin, A., Deneuve, F., Lam, P. L., and Berar, J. F., J. Electrochem. Soc. 139 (5), 1479 (1992).Google Scholar
17. Duclos, S.J., Greskovich, C.D., and O'Clair, C.R., Scintillators and Phosphor Materials, edited by Weber, M.J., Lecoq, P., Ruchti, R.C., Woody, C., Yen, W.M., and Zhu, R.Y., MRS Symp. Proc. 348, 503 (1994).Google Scholar
18. Brixner, L. H., and Blasse, G., J. Electrochem. Soc. 136 (11), 3529 (1989).Google Scholar