Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-07T19:32:47.956Z Has data issue: false hasContentIssue false

Luminescence Properties of Periodic Disordered Thin Layer GaAs/AlAs Superlattices

Published online by Cambridge University Press:  28 February 2011

Ruth Y. A. Zhang
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Houston, Tx 77204-5507
J. Strozier
Affiliation:
Empire State College, SUNY, Stony Brook, NY 11794
C. Horton
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Houston, Tx 77204-5507
A. Ignatiev
Affiliation:
Space Vacuum Epitaxy Center, University of Houston, Houston, Tx 77204-5507
Get access

Abstract

Disordered thin layer GaAs/AlAs superlattices with various disorder periods have been grown using MBE. The disorder was introduced by varying the thickness of GaAs and AlAs layers in the growth direction in various specific but randomly generated finite disorder sequences. The photoluminescence spectra of these disordered superlattice samples showed a sharp peak at the high energy side and a broad peak at the low energy side. The temperature, excitation, and disorder sequence dependence of the photoluminescence spectra indicates that the sharp peak is due to the pseudo-direct exciton emission, and the broad peak is strongly related to the localized states induced by disorder. In addition, the results demonstrate that the luminescence intensity of disordered superlattices can be improved by up to two orders of magnitude over that of ordered short period superlattices. Finally, we propose a kinetic model for the state population and find that the photoluminescence spectra can be well described by this model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sasaki, A., Kasu, M., Yamamoto, T., and Noda, S., Japn. J. Appl. Phys. 28, L1249, (1989).Google Scholar
2 Yamamoto, T., Kasu, M., Noda, S., and Sasaki, A., J. Appl., Phys. 68, 5318, (1990).Google Scholar
3 Kasu, M., Yamamoto, T., Noda, S., and Sasaki, A., Japn. J. Appl. Phys. 29, L1055, (1990).Google Scholar
4 Wang, X.-L., Wakahara, A., and Sasaki, A., Appl. Phys. Lett. 62, 888, (1992).Google Scholar
5 Arent, D. J., Alonso, R. G., Homer, G. S., Levi, D., Bode, M., Mascarenhas, A., Olson, J. M., Yin, X., DeLong, M. C., SpringThorpe, A. J., Majeed, A., Mowbray, D. J., and Skolnick, M. S., Phys. Rev. B 49, 11173, (1994).Google Scholar
6 Ge, W., Sturge, M. D., Schmidt, W. D., Pfeiffer, L. N., and West, K. W., Appl. Phys. Lett. 57, 55, (1990).Google Scholar
7 Sham, L. J., and Lu, Y-T., J. Lumin. 44, 207 (1989).Google Scholar
8 Wang, E. G., Xu, J. H., Su, W. P., and Ting, C. S., Appl. Phys. Lett. 64, 443, (1994).Google Scholar
9 Finkman, E., Sturge, M. D., Meynadier, M.-H., Nahory, R. E., Tamargo, M. C., Hwang, D. M., and Chang, C. C., J. Lumin. 39, 57, (1987).Google Scholar
10 Su, W. P., and Shih, H. D., J. Appl. Phys. 72, 2080, (1992).Google Scholar
11 Strozier, J., Zhang, Y. A., Horton, C., Ignatiev, A., and Shih, H. D., J. Vac. Sci. Technol. A11, 923,(1993).Google Scholar
12 Cohen, E. and Sturge, M. D., Phys. Rev. B 25, 3828, (1982).Google Scholar
13 Kivelson, S. and Gelatt, C. D. Jr., Phys. Rev. B 26, 4646, (1982).Google Scholar
14 Fischer, R., Heim, U., Stem, F., and Weiser, K., Phys. Rev. Lett., 26,1182, (1971).Google Scholar