Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T14:00:40.887Z Has data issue: false hasContentIssue false

The Luminescence Mechanism of Porous Silicon

Published online by Cambridge University Press:  28 February 2011

P. D. J. Calcott
Affiliation:
Defence Research Agency (RSRE), St. Andrews Road, Malvern, Worcs. WR143PS, UK
K. J. Nash
Affiliation:
Defence Research Agency (RSRE), St. Andrews Road, Malvern, Worcs. WR143PS, UK
L. T. Canham
Affiliation:
Defence Research Agency (RSRE), St. Andrews Road, Malvern, Worcs. WR143PS, UK
M. J. Kane
Affiliation:
Defence Research Agency (RSRE), St. Andrews Road, Malvern, Worcs. WR143PS, UK
D. Brumhead
Affiliation:
Defence Research Agency (RSRE), St. Andrews Road, Malvern, Worcs. WR143PS, UK
Get access

Abstract

We report resonantly excited photoluminescence (PL) spectroscopy of highly porous silicon. In the PL spectra we observe satellite structure due to the participation of momentum-conserving phonons in the optical transitions. The momentum-conserving role of these phonons, together with their energies and relative coupling strengths, demonstrate beyond doubt that crystalline silicon, which has already been shown to be the dominant constituent of unoxidised porous silicon, also forms the luminescent material. We show that the theory of quantum confinement in crystalline silicon wires can explain our results and those of other experiments, if the electron-hole interaction, andthe localisation of carriers by fluctuations in wire width, are taken into account.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J., and Brumhead, D., to be published.Google Scholar
3. Read, A. J., Needs, R. J., Nash, K. J., Canham, L. T., Calcott, P. D. J. and Qteish, A., Phys. Rev. Lett. 69, 1232 (1992).Google Scholar
4. Dean, P. J., Haynes, J. R., and Flood, W. F., Phys. Rev. 161, 711 (1967).Google Scholar
5. Shaklee, K. L. and Nahory, R. E., Phys. Rev. Lett. 24, 942 (1970);Google Scholar
Nishino, T., Takeda, M., and Hamakawa, Y., Solid State Commun. 14, 627 (1974).Google Scholar
6. Stoneham, A. M., ‘Theory of Defects in Solids’ (Clarendon Press, Oxford, 1975), Chapter 10.Google Scholar
7. Permogorov, S., Phys. Stat. Sol. (b) 68, 9 (1975).Google Scholar
8. Cohen, E. and Sturge, M. D., Phys. Rev. B 25, 3828 (1982).Google Scholar
9. Experiments reveal a minimum value of exciton energy loss, corresponding to the singlet-triplet splitting of the exciton2.Google Scholar
10. Cullis, A. G. and Canham, L. T., Nature 353, 335 (1991).Google Scholar
11. Koshida, N., Kiuchi, Y., and Yoshimura, S., Proc. 10th Symp. Photoelectronic Imaging Devices, London, 1991 (IOP Publ., Bristol), 377 (1992).Google Scholar
12. Petrova-Koch, V., Muschik, T., Gavrilenko, V., and Koch, F., J. Lumin., in press.Google Scholar
13. The wire structure can be converted into dots if enough silicon is consumed. TEM studies of heavily oxidised porous silicon show that in this material the crystalline silicon wire structure has become essentially disconnected, leaving an array of silicon nanocrystallites in a porous oxide matrix (A. G. Cullis, L. T. Canham, G. M. Williams, P. W. Smith, and O. D. Dosser, this conference).Google Scholar
14. Koyama, H. and Koshida, N., Ext. Abstr. Int'l. Conf. Solid State Devices and Materials, Yokohama, 1991 (Business Center for Academic Societies Jpn., Tokyo), 314 (1991).Google Scholar
15. Koshida, N. and Koyama, H., Optoelectronics - Devices and Technologies 7, 103 (1992).Google Scholar
16. Koshida, N. and Koyama, H., Mat. Res. Soc. Symp. Proc. 256 219 (1992).Google Scholar
17. Bressers, P. M. M. C., Knapen, J. W. J., Meulenkamp, E. A., and Kelly, J. J., Appl. Phys. Lett. 61, 108 (1992).Google Scholar
18. Canham, L. T., Leong, W. Y., Beale, M. I. J., Cox, T. I. and Taylor, L., Appl. Phys. Lett. 61, 2563 (1992).Google Scholar
19. Halimaoui, A., Bomchil, G., Oules, C., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., and Muller, F., Appl. Phys. Lett. 59, 304 (1991).Google Scholar
20. Canham, L. T., unpublished work.Google Scholar