Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-24T20:02:24.748Z Has data issue: false hasContentIssue false

Luminescence Intermittency and Quantum Efficiency of Individual Porous Si Nanoparticles.

Published online by Cambridge University Press:  10 February 2011

Michael D. Mason
Affiliation:
Dept of Chemistry, Univ. of California, Santa Barbara, CA., Buratto@chem.ucsb.edu
Grace M. Credo
Affiliation:
Dept of Chemistry, Univ. of California, Santa Barbara, CA., Buratto@chem.ucsb.edu
Paul J. Carson
Affiliation:
Dept of Chemistry, Univ. of California, Santa Barbara, CA., Buratto@chem.ucsb.edu
Steven K. Buratto
Affiliation:
Dept of Chemistry, Univ. of California, Santa Barbara, CA., Buratto@chem.ucsb.edu
Get access

Abstract

We have recently observed spectrally resolved vibronic structure and luminescence intermittency from nanometer-size porous silicon nanocrystals. In this study we examine the quantum efficiency of a single nanoparticle and show that emitting nanoparticles do so with near unity quantum efficiency. This result suggests that the emission from porous Si nanoparticles, and thus bulk porous Si, results from a small number of high quantum efficiency emitters. In our previous work we have shown that our nanoparticles contain more than one coupled chromophore. In order to examine these effects more closely we employ several spectroscopy and microscopy techniques including: 1) single-particle spectroscopy, 2) shear-force microscopy, and 3) time-resolved spectroscopy, on a colloidal suspension of size-selected, surface-oxidized nanoparticles. In addition we apply statistical techniques to provide a more complete picture of the coupling between chromophores in a given nanoparticle.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Lehman, V. and Gosele, U., Appl. Phys. Lett. 58, 865 (1991).Google Scholar
3. Collins, R. T., Fauchet, P. M., and Tischler, M. A., Phys. Today 50, 24 (1997).Google Scholar
4. Cullis, G., Canham, L. T., and Calcott, P. D. J., J. Appl. Phys. 82, 90 (1997).Google Scholar
5. Wilson, W. L., Szajowski, P. F., and Brus, L. E., Science 262, 12421244 (1993).Google Scholar
6. Brus, L. E., J. Phys. Chem. 98, 3575 (1994).Google Scholar
7. Efros, A. L., Rosen, M., Averboukh, B., Kovalev, D., Ben-Chorin, M., and Koch, F., Phys. Rev. B 56, 3875 (1997).Google Scholar
8. Dumas, P., Gu, M., Syrykh, C., Halimaoui, A., Salvan, F., Gimzewski, J. K., and Schlitter, R. R., J. Vac. Sci. Technol. B 12, 2064 (1994).Google Scholar
9. Mason, M. D., Credo, G. M., Weston, K. D., and Buratto, S. K., Phys. Rev. Lett. 80, 5405 (1998).Google Scholar
10. Heinrich, J. L., Curtis, C. L., Credo, G. M., Kavanagh, K. L., and Sailor, M. J., Science 255, 66 (1992).Google Scholar
11. Weston, K. D. and Buratto, S. K., J. Phys. Chem. A 102, 3635 (1998).Google Scholar
12. , Betzig, Finn, P. L., and Weiner, J. S., Appl. Phys. Lett. 60, 2484 (1992).Google Scholar
13. Weston, K. D., Ph.D. Thesis, UC Santa Barbara, 1998.Google Scholar
14. Prokes, S. M., J. Appl. Phys. 73, 407 (1993).Google Scholar
15. Hybertsen, M. S., Phys. Rev. Lett. 72, 1514 (1994).Google Scholar