Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T19:41:21.238Z Has data issue: false hasContentIssue false

Low-Temperature Organometallic Chemical Vapor Deposition of Transition Metals

Published online by Cambridge University Press:  25 February 2011

Herbert D. Kaesz
Affiliation:
Department of Chemistry & Biochemistry - UCLA - Los Angeles, CA 90024-1569
R. Stanley Williams
Affiliation:
Department of Chemistry & Biochemistry - UCLA - Los Angeles, CA 90024-1569
Robert F. Hicks
Affiliation:
Department of Chemical Engineering - UCLA - Los Angeles, CA 90024-1592
Yea-Jer Arthur Chen
Affiliation:
Department of Chemistry & Biochemistry - UCLA - Los Angeles, CA 90024-1569
Ziling Xue
Affiliation:
Department of Chemistry & Biochemistry - UCLA - Los Angeles, CA 90024-1569
Daqiang Xu
Affiliation:
Department of Chemistry & Biochemistry - UCLA - Los Angeles, CA 90024-1569
David K. Shuh
Affiliation:
Department of Chemistry & Biochemistry - UCLA - Los Angeles, CA 90024-1569
Hareesh Thridandamt
Affiliation:
Department of Chemical Engineering - UCLA - Los Angeles, CA 90024-1592
Get access

Abstract

A variety of transition-metal films have been grown by organometallic chemical vapor deposition (OMCVD) at low temperatures using hydrocarbon or hydrido-carbonyl metal complexes as precursors. The vapors of the metal complexes are transported with argon as the carrier gas, adding H2 to the stream shortly before contact with a heated substrate.

High-purity platinum films have been grown using (η5−C5H5)PtMe3 [1] or (η5−CH3C5H4)PtMe3 [2] at substrate temperatures of 180°C or 120°C, respectively. The incorporation of a methyl substituent on the cyclopentadienyl ligand decreases the melting point of the organoplatinum complex from 106°C [1] to 30°C [2] and increases the vapor pressure substantially. Film deposition also occurs at a lower substrate temperature. Analyses by X-ray diffraction (XRD), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) indicate that the films are well crystallized and do not contain any observable impurities after sputter cleaning.

The substrate temperatures for the first appearance of other transition-metal films from organometallic precursors are as follows (°C): Rh(η3−C3H5)3 (120/Si), Ir(η3-C3H5)3 (100/Si), HRe(CO)5 (130/Si) and Ni(η5−CH3C5H4)2 (190/glass, 280/Si). These films are essentially amorphous and contain trace oxygen impurities (< 2%), except for the Re film, which was 10% oxygen and 20%carbon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Green, M.L. and Levy, R.A., J.Metals, 37, 63 (1985) and references therein.Google Scholar
2. Berry, A.D., Brown, D.J., Kaplan, R. and Cukauskas, E.J., J.Vac.Sci.Tech. A 4, 21 (1986).CrossRefGoogle Scholar
3. Gross, M.E. and Schnoes, K.J., Proc. 10th Intl. Conf. on Chemical Vapor Deposition, 759 (1987).Google Scholar
4. Pauleau, Y., Proc. 10th Intl. Conf. on Chemical Vapor Deposition, 685 (1987).Google Scholar
5. Green, M.L., Gross, M.E., Papa, L.E., Schnoes, K.J. and Brasen, D., J.Electrochem.Soc. 132, 2677 (1985).CrossRefGoogle Scholar
6. (a) Kaesz, H.D., J.Organomet.Chem. 200, 145 (1980); (b) Y.J. Chen, H.D. Kaesz, H. Thridandam, and R.F. Hicks, Appl.Phys.Lett. 53, 1591 (1988).Google Scholar
7. Kaplin, Yu. A., Belysheva, G.V., Zhil'tsov, S.F., Domrachev, G.A., and Chernyshova, L.S., J.Gen.Chem. (USSR), 50, 100 (1980); Zhur.Obsch.Khimii 50, 118 (1980).Google Scholar
8. Gozum, J.E., Pollina, D.M., Jensen, J.D. and Girolami, G.S., J.Amer.Chem.Soc. 110, 2688 (1988).CrossRefGoogle Scholar
9. Robinson, S.D., Shaw, B.L., J.Chem.Soc. 277, 1529 (1965).Google Scholar
10. Fritz, H.P., Schwarzhans, K., J.Organomet.Chem. 5, 181 (1966).Google Scholar
11. Baldwin, J.C. and Kaska, W.C., Inorg.Chem. 14, 2020 (1975).Google Scholar
12. Powell, J. and Shaw, B.L., J.Chem.Soc. A, 583 (1968).Google Scholar
13. Chini, P. and Martinengo, S., Inorg.Chem. 6, 837 (1967).Google Scholar
14. Urbancic, M.A. and Shapley, J.R., Inorg.Synth. 25, in press.Google Scholar
15. Schmidt, S.P., Trogler, W.C. and Basolo, F., Inorg.Synth. 23, 40 (1985).Google Scholar
16. Cardes, J.F., Chem.Ber. 95, 3084 (1962).CrossRefGoogle Scholar
17. Kohler, F.H., J.Organomet.Chem. 110, 235 (1976).CrossRefGoogle Scholar
18. Stauf, G.T., Driscoll, D.C., Dowben, P.A., Barfuss, S. and Grade, M., Thin Solid Films, 153, 421 (1987).Google Scholar