Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T23:21:05.826Z Has data issue: false hasContentIssue false

Low-Temperature Diffusivity of Hydrogen in Different Silicon Substrates

Published online by Cambridge University Press:  26 February 2011

Xiaojun Deng
Affiliation:
Current address: Washington State University, Electronic Materials Laboratory, 100 Sprout Road, Richland, WA
Bhushan L. Sopori
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
Get access

Abstract

The diffusivity of deuterium (D) at 250°C was determined in silicon samples grown by different techniques. It is found that the diffusivity increases with the growth speed, increase in carbon content and a decrease in oxygen concentration of the substrate. These growth conditions correlate well with the concentration of vacancy-type defects in the as-grown state. Hence, we conclude that a vacancy mechanism is responsible for low-temperature hydrogen diffusion in silicon. The highest diffusivity for hydrogen, calculated from these data, was found to be 3 × 10−7 cm2/s.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sah, C. T., Chen, J. Y., and Tzou, J. J. T., J. Appl. Phys, 54, 944 (1983).Google Scholar
2. Gale, R., Feigl., F. J. Magee, C. W., and Young, D. R., J. Appl. Phys., 54, 6938 (1983)Google Scholar
3. Seager, C. H., Anderson, R. A., and Panitz, J. K. G., J. Mater. Res. 2 (1), 96, Jan. /Feb. (1987).Google Scholar
4. Van Wieringen, A. and Warmholtz, N., Physica, 22, 849 (1956)Google Scholar
5. Corbett, J. W., Lindstrom, J. L., and Pearton, S. J., MRS Proc. 104, 229 (1988).Google Scholar
6. Pearton, S. J., Corbett, J. W., and Stavola, M., Hydrogen in Crystalline Semiconductors, Springer Verlag, 1992.Google Scholar
7. Sopori, B. L., Jones, K., and Deng, X., Appl. Phys. Lett. 21, 5260 (1992).Google Scholar
8. Perichaud, I. and Martinuizi, S., Proc. 22nd IEEE, PVSC, 877 (1991).Google Scholar
9. Muller, J. C., Ababou, Y., Barhdadi, A., Courcelle, E., Unamuno, S., Salles, D., and Siffert, P., Solar Cells, 17, 201 (1986).Google Scholar
10. Sopori, B. L., Sysmposium, Defect Engineering in Semiconductor Growth, Processing, and Device Technology, MRS, Proc. 262, 407 (1992).Google Scholar
11. Lindhard, J. and Scharff, M., Phys. Rev. 124,128 (1961)Google Scholar
12. Gibbons, J. G., Johnson, W. S., and Mylroie, S. W., Projected Range Statistics (Semiconductors and Related Material), John Wiley & Sons, Stroudsburg, Pennsylvania, 1975.Google Scholar
13. Ashok, S. and Giewont, K., Jap. J. Appl. Phys., 24, L533 (1985).Google Scholar
14. Estreicher, S. K., Mater. Sci. Engr. Reports, to be oublishedGoogle Scholar
15. Sopori, B. L., Deng, X., Reedy, R., Asher, S., and Sharma, S., to be publishedGoogle Scholar
16. Sopori, B. L., J. Appl. Phys. 64, 5264 (1988)Google Scholar