Skip to main content Accessibility help
×
Home

Low-Temperature Crystallization of Amorphous Silicon Thin Films by Microwave Heating

  • Jeong No Lee (a1), Yoon Chang Kim (a1), Yong Woo Choi (a1) and Byung Tae Ahn (a1)

Abstract

Microwave heating was utilized for the first time for solid phase crystallization of amorphous silicon films. Microwave heating lowered annealing temperature and reduced the annealing time for complete crystallization. For example, the amorphous silicon film deposited at 400 °C was fully crystallized in 3 h at 550 °C below which glass is available as a substrate. On microwave heating, the hydrogen in the amorphous films diffused out very quickly, but there was no change in structural disorder following hydrogen evolution. The lower temperature crystallization of a-Si films compared to conventional furnace annealing is due to the interaction between microwave and silicon atoms. The grain size of the crystallized silicon films was in the range of 0.55 to 0.78 μm, depending on the deposition temperature. These grain sizes are not so small comparing those of Si films by conventional furnace heating, while the crystallization processing time is much shorter.

Copyright

References

Hide All
1. Oshima, H. and Morozumi, S., Ext. Abstr. Int. Conf. Solid State Devices and Materials, Yokohama, (1991) 577
2. Kohno, A., Sameshima, T., Sano, N., Sekiya, M. and Hara, M., IEEE Trans. Electron Devices 42, (1995)251
3. Park, J. W., Moon, D. G., Ahn, H. B. and Im, H. B., Thin Solid films 245, (1994) 228
4. Sohn, D. K., Lee, J. N., Kang, S. W. and Ahn, B. T., Jpn. J. Appl. Phys. 35, (1996) 1005
5. Lee, B. -I., Kim, K. -H., Jeong, W. -C., Shin, J. -W., Ahn, P. -S. and Joo, S.-K., Korean J. Mater. Res. 6, (1996) 900
6. King, T. -J. and Saraswat, K. C., Int. Electron Devices Meet., Tech. Dig., (1991) 567
7. Sutton, W. H., Ceramic Bult. 68, (1989) 376
8. Meek, T. T. and Blake, R. D., J. Mat. Sci. Lett. 5, (1986) 270
9. Fang, C. J., Gruntz, K. J., Ley, L., Cardona, M., Demond, I. J., Muller, G. and Kalbitzer, S., J. Non-Cryst. Solids 35&36, (1980) 255
10. Lee, J. N., Lee, B. J., Moon, D. G. and Ahn, B. T., Jpn. J. Appl. Phys., summited
Nakazawa, U.K. and Tanaka, K., J. Appl. Phys. 68, (1990) 1029
12. Zellama, K., Chahed, L., Sladek, P., Theye, M. L., von Bardeleben, J. H. and Roca, P., Cabarrocas, I, Phys. Rev. B 53(7), (1996) 3804
13. Janney, M. A., Kimrey, H. D., Schmiat, M. A. and Kiggan, J. O., J. Am, Ceram. 74, (1991) 1675
14. Booske, J. H., Cooper, R. F. and Dobson, I., J. Mater. Res. 7, (1992) 495

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed