Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T18:55:42.578Z Has data issue: false hasContentIssue false

Low-temperature Chemical Vapor Deposition of Rhodium and Iridium thin Films

Published online by Cambridge University Press:  21 February 2011

David C. Smith
Affiliation:
Los Alamos National Laboratory
Steve G. Pattillo
Affiliation:
Los Alamos National Laboratory
Norman E. Elliott
Affiliation:
Los Alamos National Laboratory
Thomas G. Zocco
Affiliation:
Los Alamos National Laboratory
Carol J. Burns
Affiliation:
Los Alamos National Laboratory
Joseph R. Laia
Affiliation:
Los Alamos National Laboratory
Alfred P. Sattelberger
Affiliation:
Los Alamos National Laboratory
Get access

Abstract

Low-temperature chemical vapor deposition of M(allyl)3 (M = Rh, Ir; allyl = η3 -C3H5) in the presence of H• yields thin, crystalline metal films of greater than 97% metal composition. Depositions using H2 result in the formation of materials which are amorphous and contain a significant amount of residual carbon (14%). The composition of these materials does not differ significantly from that obtained from the vacuum thermal deposition of M(allyl)3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inorganic and Structural Chemistry Group (INC-4), MS-C346, Los Alamos National Laboratory, Los Alamos, NM 87545.Google Scholar
2. Materials Science and Technology Division, MS-E549, Los Alamos National Laboratory, Los Alamos, NM 87545.Google Scholar
3. Materials Science and Technology Division, MS-G730, Los Alamos National Laboratory, Los Alamos, NM 87545.Google Scholar
4.Green, M. L. and Levy, R. A., J. Metals 1985, 63.Google Scholar
5.Haas, G., J. Opt. Soc. Am. 72, 27 (1982).Google Scholar
6.Macklin, B. A. and Withers, J. C., in Proc. Conf. Chem. Vapor Deposition Refract. Metals, Alloys. Compounds, Gatlinburg, TN, 1967, pp. 161–173.Google Scholar
7.Heidberg, J., Daghighi-Ruhi, R., Von Weyssenfoff, H., and Habekost, A., in Laser and Particle-Beam Chemical Processing for Microelectronics, edited by Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M. (Mater. Res. Soc. Proc. 101, Boston, MA,1988) pp. 221229.Google Scholar
8.Laegreid, N. and Wehner, G. K., J. Appl. Phys 32Z, 365 (1961).Google Scholar
9.Delplancke, M. P., Delcambe, P., Binst, L., Jardinier-Offergeld, M., and Boullion, F., Thin Solid Films 143, 43 (1986).Google Scholar
10.Perry, A. J. and Archner, N. J., Agard Lect. Ser. No. 106 mat, coat. techn. 4/1–16 (1980).Google Scholar
11.Etspuler, A. and Suhr, H., Appl. Phys. A 48, 373 (1989).Google Scholar
12.Kaesz, H. D., Williams, R. S., Hicks, R. F., Chen, Y.-J. A., Xue, Z., Xu, D., Shuh, D. K., and Thridandam, H., in Chemical Perspectives of Microelectronic Materials, edited by Gross, M. E., Jasinski, J., and Yates, J. T. (Mat. Res. Soc. Proc. 131, Boston, MA,1989) pp. 395400.Google Scholar
13.Powell, J. and Shaw, B. L., J. Chem. Soc. 1968, 583.Google Scholar
14.Chini, P. and Martinengo, S., Inorg. Chem. 6, 837 (1967).Google Scholar
15.Trent, D. E., Paris, B., and Krause, H. H., Inorg. Chem. 3, 1057 (1964).Google Scholar
16.Truex, T. J., Saillant, R. B., and Monroe, F. M., J. Electrochem. Soc. 122, 1396 (1975).Google Scholar
17.Kaplin, Yu. A., Belysheva, G. V., Zhir'tsov, S. F., Domrachev, G. A., and Chernyshava, L. S., Zhur. Obsh. Khimii 50, 118 (1980).Google Scholar