Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T03:41:51.965Z Has data issue: false hasContentIssue false

Low Temperature UV Growth of SiO2 in O2 and N2O

Published online by Cambridge University Press:  25 February 2011

Asghar Kazor
Affiliation:
Electronic & Electrical EngineeringUNIVERSITY COLLEGE LONDONTorrington Place, London WC1E 7JE, UK
Ian W. Boyd
Affiliation:
Electronic & Electrical EngineeringUNIVERSITY COLLEGE LONDONTorrington Place, London WC1E 7JE, UK
Get access

Abstract

We report here the use of a low pressure Hg lamp to grow oxide layers on Si in N 2O and O2. Layer thicknesses up to 100Å, whose IR absorption characteristics are similar to those exhibited by thermal oxides, have been produced. Preliminary modelling of the process is described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sai-Halasz, G.A., Wordeman, M.R., Kevn, D.P., Ganin, E., Rishton, O.S., Zicherman, D.S., Schmid, H., Polcaris, M.R., Ng, H.Y., Restle, P.J., Chang, T.H.P. and Dennard, R.H., IEEE.Elec. Dev. Lett., E.D.L. 8,463 (1987)Google Scholar
2. Fair, R.B. and Ruggles, G.A., Solid. State Tech., 33, No 5, 107 (1990)Google Scholar
3. Sze, S.M., VLSI technology Technology (McGraw-Hill New York, 1989) p 1.Google Scholar
4. Salbert, G. T., Reinhard, D. K., and Asmussen, J., J. Vac. Sci. Technol, A 8 (3), 2919 (1990)Google Scholar
5. Kimura, S., Murakami, E., Miyake, K., Warabisako, T., Sunami, H., and Tokuyama, T., J. Vac. Sci. Technol., A(2), 1460 (1984)Google Scholar
6. Herman, J.S., Terry, F.L.. IEEE.Elec.Dev.Lett, ED12, 236 (1991)Google Scholar
7. Fogarassy, E., White, C.W., Slaoui, A., Fuchs, C., Siffert, P. and Pennycook, S.J. Appl Phys Lett. 53, 1720 (1988)Google Scholar
8. Morita, M., Aritome, S., Tanaka, T. and Hirose, M.. Appl.Phys.Lett, 49, 699 (1989)Google Scholar
9. Nguyen, S.V., Dobuzinski, D., Dopp, D., Gleason, R., Gibson, M. and Fridmann, S., Thin Solid Films. 194, 595 (1990)Google Scholar
10. Kazor, A. and Boyd, I. W., Appl.Surf.Sci. (To be published, 1992)Google Scholar
11. Kazor, A. and Boyd, I. W., Electron.Lett. 27, 909 (1991)Google Scholar
12. Boyd, I.W. and Wilson, J.I.B., Appl.Phys.Lett 53, 4166 (1982)Google Scholar
13. Goodman, A. and Breece, J.M., J. Electrochem. Soc. 117, 983 (1970)Google Scholar
14. Cabrera, N. and Mott, N.F., Rep. Progr.Phys. 12, 163184 (1948)Google Scholar
15. Deal, B.E. and Grove, A.S., J. Appl. Phys. 36, 3770 (1965)Google Scholar
16. Young, E.M. and Tiller, W.A., Appl.Phys.Lett. 50, 46 (1987)Google Scholar
17. Quenon, P., Wautelet, M. and Dumont, M., J.Appl.Phys, 61, 3112 (1986)Google Scholar
18. Goodman, A.M., Phys.Rev. 152, 2785 1966 Google Scholar
19. Williams, R., Phys.Rev. 140, 2A A569 1965 Google Scholar
20. Yasuda, Y., Zaima, S., Kaida, T. and Koide, Y., J. Appl. Phys. 67, 2603 (1990)Google Scholar
21. Shaw, D.Atomic Diffusion in Semiconductors” (Plenum, London 1973) p.590 Google Scholar