Skip to main content Accessibility help
×
Home

Low Temperature Tungsten, Tungsten Carbide and Tantalum Carbide Film Growth

  • Y.-M. Sun (a1), S.Y. Lee (a1), E. R. Engbrecht (a1), K. Pfeifer (a2), S. Smith (a2), J. M. White (a1) and J. G. Ekerdt (a1)...

Abstract

Abstract:Low temperature chemical vapor deposition of tungsten, tungsten carbide and tantalum carbide films on SiO2/Si(100) surfaces was studied by X-ray photoelectron spectroscopy (XPS) and electron microscopy. Tungsten carbide films were deposited using the W(CO)6 precursor with and without ethylene over temperatures ranging from 250 to 500 °C. The films grown without ethylene contained approximately 13 % carbon and 6 % oxygen. Cross section scanning electron microscopy imaging of the films grown at various temperatures without ethylene shows a polycrystalline microstructure, and the grain size increases dramatically as the growth temperature increases. Introducing ethylene increased carbon incorporation and changed the microstructure to amorphous-like. The tungsten to carbon ratio was approximately 2 at growth below 500 °C, and reached ~ 1.2 above 500 °C. The tantalum carbide films were deposited in a plasma enhanced chemical vapor deposition (PECVD) process using methane. The PECVD tantalum carbide films were conductive with a resistivity of ~1000 µΩ cm, which is about one order of magnitude lower than thermally grown films from pentakisdimethylamino tantalum.

Copyright

References

Hide All
1. Kelsey, J. E., Goldberg, C., Nuesca, G., Peterson, G., Kaloyeros, A. and Arkles, B., J. Vac. Sci. Technol. B 17, 1101 (1999).
2. Oku, T., Kawakami, E., Uekuho, M., Takahim, K., Yamaguchi, S. and Murakumi, M., Appl. Surf. Sci. 99, 265 (1996).
3. Ono, H., Nakano, T. and Ohta, T., Appl. Phys. Lett. 64, 1511 (1994).
4. Clevenger, L. A., Bojarczuk, N. A., Holloway, K., Harper, J.M.E., Cabaral, C. Jr, Schad, R.G., Cardone, F. and Stolt, L., J. Appl. Phys. 73, 300 (1993).
5. Wang, M.T., Lin, Y.C., and Chen, M. C., J. Electrochem. Soc. 145, 2538 (1998).
6. Muranka, S. P., Gutmann, R. J., Kaloyeros, A. E. and Lanford, W. A., Thin Solid Films 236, 257 (1993).
7.Carbide, Nitride and Boride Materials Synthesis and Processing”, ed. Weimer, A.W., (Chapman & Ahll, New York, 1997) pp. 639664.
8. Imahori, J., Oku, T. and Murakami, M., Thin Solid Films 301, 142 (1997).
9. Sun, Y.-M., Lee, S.Y., Lemonds, A.M., Engbrecht, E.R., Veldman, S., Lozano, J., White, J. M., Ekerdt, J. G., Emesh, I., and Pfeifer, K., (submitted).
10.Handbook of X-ray Photoelectron Spectroscopy”, edited by Chastin, J. and King, R. C. Jr, Published by Physical Electronics, U.S.A, 1995.
11. Rigby, L. J., Can. J. Phys. 42, 1256 (1964).
12. Chesters, M.A., Hopkins, B.J., Taylor, P.A. and Winton, R.I.. Surf. Sci. 83, 181 (1979).
13. Fix, R., Gordon, R. G., Hoffman, D. M., Chem. Mater. 5, 614 (1993).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed