Skip to main content Accessibility help

Low Temperature Growth of GaAs and AlGaAs by Mombe

  • C. R. Abernathy (a1), D. A. Bohling (a2) and A. C. Jones (a3)


We have examined various methods of overcoming the problems of low growth efficiency and high carbon uptake which occur when GaAs is grown at low temperatures by Metal Organic Molecular Beam Epitaxy (MOMBE). We have found that removal of the carbon through conventional means such as precracking or interaction with hydrogen is not effective in enhancing the carbon removal process. In fact, the use of a hydrogen plasma during growth actually increases the carbon background due to a reduction in the surface V/III ratio. Greater success is obtained when alternative precursors are used as replacements for AsH3 and triethylgallium (TEG). Tris-dimethylaminoarsenic (DMAAs) offers reduced carbon uptake through formation of amine compounds while tri-isobutylgallium (TTBG) shows better efficiency and less carbon than TEG at low growth temperature.



Hide All
1. See for example: Kaminska, M. and Weber, E., Proc. of the 16th Inter. Conf. on Def. in Semi, Lehigh Univ., 1991.
2. Chiu, T. H., Tsang, W. T., Cunningham, J. E., and Robertson, A. Jr, J. Appl. Phys. 62 (1987) 2302.
3. Kobayashi, N., Benchimol, J. L., Alexandre, F., and Gao, Y., Appl. Phys. Lett. 51 (1987) 1907.
4. Uneta, M., Watanabe, Y. and Ohmachi, Y., J. Crystal Growth 110 (1991) 576.
5. Benchimol, J. L., Alexandre, F., Gao, Y., and Alaoui, F., J. Crystal Growth 95 (1989) 150.
6. Houng, Y. M., Second Int. Conf. on CBE, Houson, TX, Dec. 1989.
7. Abernathy, C. R., Pearton, S. J., Baiocchi, F. A., Ambrose, T., Jordan, A. S., Bohling, D. A., and Muhr, G. T., J. Crystal Growth 110 (1991) 457.
8. Robertson, A. Jr, Chiu, T. H., Tsang, W. T., and Cunningham, J. E., J. Appl. Phys. 64 (1988)877.
9. Martin, T. and Whitehouse, C. R., J. Crystal Growth 105 (1990) 57.
10. Kondo, N. and Nanishi, Y., Jpn. J. Appl. Phys. 28 (1989) L7.
11. Lu, Z., Schmidt, T., Chen, D., Osgood, R. M. Jr, Holber, W. M., Podlesnik, D. V. and Forster, J., Appl. Phys. Lett. 58 (1991) 1143.
12. Tanaka, Y., Kunitsugu, Y., Suemune, I., Honda, Y., Kan, Y., and Yamanishi, M., J. Appl. Phys. 64 (1988) 2778.
13. Nagata, K., Iimura, Y., Aoyagi, Y., Namba, S., Den, S., and Montani, A., J. Crystal Growth 93 (1988) 265.
14. Mödritzer, K., Chem. Ber 92 (1959) 2637.
15. Zimmer, M. H., Hovel, R., Brusch, W., Brauers, A., and Balk, P., J. Crystal Growth 707 (1991) 348.
16. Abernathy, C. R., Wisk, P. W., Bohling, D. A., and Muhr, G. T., submitted to Appl. Phys. Lett.
17. Alfa Organometallics
18. Shriver, D. F. and Parry, R. W., Inorg. Chem. 2 (1963) 1039.
19. Whitehouse, C., Martin, T. and Lane, P. A. (RSRE, Malvem, U.K.) personal communication.
20. Plass, C., Heinecke, H., Kayser, O., Lüth, H. and Balk, P., J. Crystal Growth 88 (1988) 455.
21. Bohling, D. A., Muhr, G. T., Abernathy, C. R., Jordan, A. S., Pearton, S. J., and Hobson, W. S., J. Crystal Growth 107 (1991) 1068.
22. Grady, A. S., Linney, R. E., Markwell, R. D., Mills, G. P., Russell, D. K., Williams, P. J., and Jones, A. C., J. Mater. Chem. in press.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed