Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T13:24:30.201Z Has data issue: false hasContentIssue false

Low Temperature Epitaxy on H-Passivated Si(100) by Sputter Deposition

Published online by Cambridge University Press:  25 February 2011

Chau-Chen Chen
Affiliation:
Department of Materials Science, Stanford University, Stanford, CA 94305
Donald L. Smith
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
Greg Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304
Stig B. Hagstrom
Affiliation:
Department of Materials Science, Stanford University, Stanford, CA 94305
Get access

Abstract

Conventional preparation of Si for epitaxy involves high-temperature heating to remove surface oxide or to remove H passivation left by HF cleaning. Attempted MBE on H-passivated Si(100) has resulted in amorphous films below 640 K. We show that the use of ion beam sputtered Si allows the growth of thick (300 nm) epitaxial layers on H-passivated Si(100) at high rate (0.65 nm/s) and at 483 K, well below the H desorption temperature. This is because the sputtered Si has translational kinetic energy of tens of eV, well above the Si-H bond strength of a few eV, so that the passivating H does not block the epitaxial bonding sites as it does in MBE. The ability to grow epitaxially on H-passivated Si not only reduces the maximum Si processing temperature required, but also keeps the substrate passivated against contamination until the onset of deposition.

During deposition, the LEED pattern changes gradually from the 1 × 1 of the H-passivated Si to the 2 × 1 reconstruction of bare or partially hydrogenated Si(1 00), yet SIMS shows that little of the disappearing H accumulates at the substrate interface or in the bulk of the film. Thermal desorption spectra show that its bonding remains similar to that on the substrate surface. Thus, it appears to float to the surface of the depositing film and become gradually knocked off of the surface over the course of a few hundred nm of deposition. Cross-sectional TEM lattice imaging shows near-perfect ordering of the epilayer and a barely distinguishable substrate interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kern, W. and Puotinen, D. A., RCA Rev. 31 187 (1970)Google Scholar
2. Ishizaka, A. and Shiraki, Y., J. Electrochem. Soc. 133 (4), 666 (1986)Google Scholar
3. Grunthaner, P.J., Grunthaner, F. J., Fathauer, R. W., Lin, T. L., Hecht, M. H., Bell, L. D., Kaiser, W. J., Schowengerdt, F. D. and Mazur, J. H., Thin Solid Films 183, 197 (1989)Google Scholar
4. Hirayama, H. and Tatsumi, T., Appl. Phys. Lett. 54(16), 1561 (1989)CrossRefGoogle Scholar
5. Fenner, D. B., Biegelsen, D. K., and Bringans, R. D., J. Appl. Phys. 66(1), 419 (1989)CrossRefGoogle Scholar
6. Iyer, S. S., Arienzo, M., and deFrésart, E., Appl. Phys. Lett. 57(9), 893 (1990)Google Scholar
7. Anthony, B., Hsu, T., Breaux, L., Qian, R., Banerjee, S. and Tasch, A., Journal of Electronic Materials 19(10), 1027 (1990)Google Scholar
8 Schulze, G. and Henzler, M., Surf. Sci. 124 336 (1983)Google Scholar
9. Meyerson, B. S., Himpsel, F. J., and Uram, K. J., Appl. Phys. Lett. 57(10), 1034 (1990)Google Scholar
10. Chabal, Y. J. and Raghavachari, K., Physical Review Letters 54(10), 1055 (1985)Google Scholar
11. Takahagi, T., Nagai, I., Ishitani, A., and Kuroda, H., J. Appl. Phys. 64 (7), 3516 (1988)Google Scholar
12. Uematsu, T., Matsubara, S., Kondo, M., Tamura, M., and Saitoh, T., Japanese Journal of Applied Physics 27(4), L493 (1988)Google Scholar
13. Tsai, C.-C., Anderson, G. B., Thompson, R., and Wacker, B., Journal of Non-Crystalline Solids 114, 151 (1989)Google Scholar
14. Hirose, F., Suemitsu, M. and Miyamoto, N., Japanese Journal of Applied Physics 29(10), L1881 (1990)Google Scholar
15. Wolff, S. H., Wagner, S., Bean, J. C., Hull, R., and Gibson, J. M., Appl. Phys. Lett. 55(19), 2017, 1989 Google Scholar
16. Eaglesham, D. J., Higashi, G. S., and Cerullo, M., Appl. Phys. Lett. 59(6), 685 (1991)Google Scholar