Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-04T16:22:38.906Z Has data issue: false hasContentIssue false

Low Temperature Epitaxial Growth of High Temperature Superconductors:Bi-Sr-Ca-Cu-O.

Published online by Cambridge University Press:  16 February 2011

Maki Kawai
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), Surface Chemistry Lab., 2-1 Hirosawa, Wako-shi, Saltama 351-01
Masami Mori
Affiliation:
Tokyo Institute of Technology, RLEM, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan.
Shunji Watabe
Affiliation:
Tokyo Institute of Technology, RLEM, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan.
Ziyuan Liu
Affiliation:
Tokyo Institute of Technology, RLEM, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan.
Yasunori Tabira
Affiliation:
Tokyo Institute of Technology, RLEM, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan.
Nobuo Ishizawa
Affiliation:
Tokyo Institute of Technology, RLEM, 4259 Nagatsuta, Midori-ku, Yokohama, 227, Japan.
Get access

Abstract

Molecular beam epitaxy of ultra thin films of Bi2Sr2CuO8-(2201 phase) is realized on the surface of SrTiO3 (100) and LaAlO3 (100) at the substrate temperature of 573 K, using 10-5Pa of NO2 as an oxidant. The film epitaxially grown from the surface of the substrate has identical in-plane lattice constant to the substrate itself. Such a growth can only be obtained on the substrate with similar lattice constant to those of the material to be formed. The crystallinity of the film strongly depended on the sequence of the metal depositions and the oxidation process. In the case of the Bi system, the elementary unit of the epitaxial growth has proved to be the subunit of the perovskite structure (Sr-Cu-Sr). The structure of the film grown on a substrate with large mismatch (MgO) is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kawai, T., Egami, Y., Tabata, H. and Kawai, S., Nature 349, 200(1991).Google Scholar
2. Adachi, H., Kohiki, S., Setsune, K., Mitsuyu, T. and Wasa, K., Jpn.J.Appl.Phys. 27, L1883(1988).Google Scholar
3. Nakamura, K., Sato, J., Kaise, M. and Ogawa, K., Jpn.J.Appl.Phys. 29, L437 (1990).Google Scholar
4. Fujita, J., Tatsumi, T., Yoshitake, T. and Igarashi, H., Appl. Phys.Lett. 54, 2364 (1989).Google Scholar
5. Kawai, M., Watanabe, S. and Hanada, T., J.Crys.Growth (1991) in press.Google Scholar
6. Terashima, T., Bando, Y., Iijima, K., Yamamoto, K., Hirata, K., Hayashi, K., Kamigaki, K. and Terauchi, H., Phys.Rev.Lett. 65, 2684 (1990).Google Scholar
7. Kanai, M., Kawai, T. and Kawai, S., Appl.Phys.Lett. 58, (1991).Google Scholar
8. Watanabe, S., Kawai, M. and Hanada, T., Jpn.J.Appl.Phys. 29, L1111 (1990).Google Scholar
9. Kawai, M., Watanabe, S. and Hanada, T., J. Vac. Sct. & Technol. A 8, 4140(1990).Google Scholar
10. Watanabe, S., Kawai, M. and Hanada, T., J. Vac. Sci. & Technol. (1991) in press.Google Scholar
11. Tarascon, J. M., Page, Y. Le, Barboux, P., Bagley, B. G., Greene, L. H., Mckinnon, M. R., Hull, G. W., Giroud, M. and Hwang, D. M., Phys. Rev. B 37, 9382 (1988).Google Scholar
12. Cullity, B. D.: Elements of X-ray Diffraction, (Addison-Wesley, Massachusetts, 1977)Google Scholar
13. Schlom, D.G., Thesis, Stanford University (1990)Google Scholar
14. Fujita, J., Yoshitake, T., Satoh, T. and Igarashi, H., Appl. Phys. Lett. 58, 1092(1991)Google Scholar