Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T21:44:17.666Z Has data issue: false hasContentIssue false

Long-Wavelength Germanium Photodetectors by Ion Implantation

Published online by Cambridge University Press:  25 February 2011

I.C. Wu
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720, USA
J.W. Beeman
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA
P.N. Luke
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA
W.L. Hansen
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA
E.E. Haller
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, USA Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720, USA
Get access

Abstract

Extrinsic far-infrared photoconductivity in thin high-purity germanium wafers implanted with multiple-energy boron ions has been investigated. Initial results from Fourier transform spectrometer(FTS) measurements have demonstrated that photodetectors fabricated from this material have an extended longwavelength threshold near 192μm. Due to the high-purity substrate, the ability to block the hopping conduction in the implanted IR-active layer yields dark currents of less than 100 electrons/sec at temperatures below 1.3K under an operating bias of up to 70mV. Optimum peak responsivity and noise equivalent power(NEP) for these sensitive detectors are 0.9A/W and 5×10−16 W/Hz1/2 at 99μm, respectively. The dependence of the performance of devices on the residual donor concentration in the implanted layer will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See articles in “Proc. 3rd IR Det. Techn. Workshop, NASA Tech. Memo 102209”, McCreight, C., ed., (1989).Google Scholar
2. Petroff, M.D. and Stapelbroek, M.G., U.S. Patent No. 4–568-960(4 February 1986).Google Scholar
3. Hadek, V., Farhoomand, J., Beichman, C.A., Watson, D.M. and Jack, M.D., Appl. Phys. Lett. 46, 403(1985).CrossRefGoogle Scholar
4. Szmulowicz, F. and Madarz, F., J. Appl. Phys. 62, 2533(1987).Google Scholar
5. Stapelbroek, M.G., Petroff, M.D., Speer, J.J., Arington, D.D., and Sayre, C., IRIS Specialty Group in IR Detectors, Boulder, CO, August 4, 1983.Google Scholar
6. Reynolds, D.B., Seib, D.H., Statson, S.B., Herter, T., Rowlands, N., and Schoenwald, J., IEEE Trans, NS 30, 857(1989).Google Scholar
7. Herter, T., Rowlands, N., Beckwith, S.V.W., and Gull, G.E., “Proc. 3rd IR Det. Techn. Workshop, NASA Tech. Memo 102209”, McCreight, C., ed., 427(1989).Google Scholar
8. Haller, E.E., Hueschen, M. R., and Richards, P. L., Appl. Phys. Lett., 34,495(1979).Google Scholar
9. Watson, D.M. and Huffman, J.E., Appl. Phys. Lett. 52 1602(1988).Google Scholar
10. Rossington, C.S., Ph.D. dissertation, University of California, Berkeley, 1988.Google Scholar
11. Wu, I.C. (unpublished work).Google Scholar
12. Haller, E.E., Hansen, W.L., and Goulding, F.S., Adv. in Phys. 30, No.1, 93(1981).Google Scholar
13. Hansen, W.L. and Haller, E.E., Mat. Res. Soc. Symp. Proc. 16, 1(1983).Google Scholar
14. Jones, K.S. and Hailer, E.E., J. Appl. Phys. 61, 2469(1987).Google Scholar
15. Hadek, V., Watson, D.M., Beichman, C.A., and Jack, M.D., Phys. Rev. B 31, 630(1985).Google Scholar
16. Infrared Labs. Inc. Product Brochure, April, 1989, p.30.Google Scholar
17. Shenker, H., Moore, W. J., and Swiggard, E. M., J. Appl. Phys., 35, 2965(1964).Google Scholar