Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-19T22:12:11.196Z Has data issue: false hasContentIssue false

Long-Range Coherency Strain and Tilted Ipitaxy in Ag-Fe-Ag Sandwich Structures on Gaas(001) Substrates

Published online by Cambridge University Press:  22 February 2011

R. F. C. Farrow
Affiliation:
IBM Almaden Research Center, San Jose, Ca. 95120.
V. S. Speriosu
Affiliation:
IBM Almaden Research Center, San Jose, Ca. 95120.
S. S. P. Parkin
Affiliation:
IBM Almaden Research Center, San Jose, Ca. 95120.
C. Chien
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, Ca.94305.
J. C. Bravman
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, Ca.94305.
R. F. Marks
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y. 10598.
P. D. Kirchner
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y. 10598.
G. A. Prinz
Affiliation:
Naval Research Laboratory, Washington, DC 20375.
B. T. Jonker
Affiliation:
Naval Research Laboratory, Washington, DC 20375.
Get access

Abstract

We find that epitaxial Fe films sandwiched between epitaxial Ag films grown on GaAs (001) substrates possess residual coherency strain at a thickness of 2000Å. The [001] directions of the Fe and Ag films are tilted with respect to the GaAs [001] axis. The tilts are coplanar with the tilt of the substrate surface normal to the [001] axis of GaAs and are qualitatively consistent with a recently proposed modol for tilted epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heinrich, B., Urquhart, K.B., Arrott, A.S., Cochran, J.F., Myrtle, K., Purcell, S.T.. Phys. Rev. Lett. 59, 1756, (1987)10.1103/PhysRevLett.59.1756Google Scholar
2. Stampanoni, M., Vaterlaus, A., Aeschlimann, M., Meir, F.. Phys. Rev. Lett. 59, 2483, (1987).10.1103/PhysRevLett.59.2483CrossRefGoogle Scholar
3. Koon, N.C., Jonker, B.T., Volkening, F.A., Krebs, J.J., Prinz, G.A.. Phys. rev. Left. 59, 2463, (1987).10.1103/PhysRevLett.59.2463Google Scholar
4. Hurdequint, H., Dunifer, G. ( personal communication)Google Scholar
5. Ludeke, R., Chiang, T.C., Eastman, D.E.. J. Vac. Sci. and Technol. 21, 599, (1982).10.1116/1.571794Google Scholar
6. Farrow, R.F.C., Parkin, S.S.P., Speriosu, V.S.. J.Appl. Phys. 64, 5315 (1988).10.1063/1.342404Google Scholar
7. Hirth, J.P. and Lothe, J., ‘Theory of Dislocations’, McGraw-Hill, (1976).Google Scholar
8. Bai, G., Jamieson, D.N., Nicolet, M.A., Vreeland, T. Jr., Mat. Res. Soc. Symp. Proc. 102, 259, (1988).10.1557/PROC-102-259Google Scholar
9. Schowalter, L.J., Hall, E.L., Lewis, N., Hashimoto, S.. Paper presented in Symposium C, MRS Fall Meeting 1988, this volume.Google Scholar