Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-23T08:48:45.988Z Has data issue: false hasContentIssue false

Localized and Itinerant States in Pu Materials

Published online by Cambridge University Press:  26 February 2011

John Joyce
Affiliation:
jjoyce@lanl.gov, Los Alamos National Lab, mailstop K764, Los Alamos, NM, 87545, United States
J.M. Wills
Affiliation:
jxw@lanl.gov, Theoretical Division, LANL, United States
T. Durakiewicz
Affiliation:
tomasz@lanl.gov, United States
M.T. Butterfield
Affiliation:
Butterfield6@llnl.gov, Lawrence Livermore National Laboratory, Chemistry & Materials Science, United States
E. Guziewicz
Affiliation:
ela@lanl.gov, Polish Academy of Sciences, Poland
K.S. Graham
Affiliation:
kgraham@lanl.gov, United States
J.L. Sarrao
Affiliation:
sarrao@lanl.gov, United States
A.J. Arko
Affiliation:
ajarko@comcast.net, United States
E.D. Bauer
Affiliation:
bauer@lanl.gov, United States
D.P. Moore
Affiliation:
dmoore@lanl.gov, Nuclear Materials Technology Division, LANL
L.A. Morales
Affiliation:
lmorales@lanl.gov, United States
O. Eriksson
Affiliation:
Olle.Eriksson@fysik.uu.se, Uppsala University, Department of Physics, Sweden
Get access

Abstract

The electronic structure of Pu materials is examined using photoelectron spectroscopy. For delta-phase Pu metal as well as PuCoGa5 and PuIn3, the 5f electrons appear to be at the threshold between localized and itinerant character. A mixed level model computational scheme is used which results in non-magnetic solutions for the electronic structure and agrees well with the photoemission measurements. Several other computational schemes are assessed against photoemission results for delta Pu. Additional insight is provided by O2 and H2 dosing of the delta Pu samples and consideration of surface effects. The experimental and computational results are consistent with the 5f electrons in Pu materials exhibiting a dual nature with some fraction of the 5f levels localized and not participating in the bonding while the other fraction of 5f character is involved in bonding and hybridization with the conduction electrons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wills, J.M.. and Eriksson, O., Los Alamos Science, 26, (ed. Cooper, N.G.), 128 (2000).Google Scholar
2. Smith, J.L. and Kmetko, E.A., J. Less Common Metals 90, 83 (1983).Google Scholar
3. Friedel, J., The Physics of Metals (ed. Ziman, J. M.), Cambridge University Press, New York (1969).Google Scholar
4. Joyce, J.J., et al. , Surf. and Interface Analysis 26, 121 (1998).Google Scholar
5. Arko, A.J., et al. , Phys. Rev. B 62, 1773 (2000).Google Scholar
6. Joyce, J.J., et al. , Phys. Rev. Lett. 91, 176401 (2003).Google Scholar
7. Wills, J.M., et al. , J. Elect. Spectr. and Related Phenom. 135, 163 (2004).Google Scholar
8. Eriksson, O., et al. , J. Alloys and Compounds 287, 1 (1999).Google Scholar
9. Sarrao, J.L., et al. , Nature 420, 297 (2002).10.1038/nature01212Google Scholar
10. Wastin, F., et al. , J. Phys.: Condens. Matter. 15, S2279 (2003).Google Scholar
11. Curro, N.J., et al. , Nature 434, 622 (2005).10.1038/nature03428Google Scholar
12. Gouder, T., et al. , Euro Phys. Lett. 55, 705 (2001).Google Scholar
13. Havela, L., et al. , Phys. Rev. B 65, 235118 (2002).10.1103/PhysRevB.65.235118Google Scholar
14. Terry, J., et al. , Surface Science 499, L141 (2002).Google Scholar
15. Gouder, T., et al. , Phys. Rev. Lett. 84, 3378 (2000).Google Scholar
16. Gouder, T., et al. , Phys. Rev. B 71, 165101 (2005).Google Scholar
17. Tobin, J.G., et al. , Phys. Rev. B 72, 085109 (2005).10.1103/PhysRevB.72.085109Google Scholar
18. Lashley, J.C., et al. , Phys. Rev. B 72, 54416 (2005).Google Scholar
19. Joyce, J.J., et al. , Phys. Rev. B 54, 17515 (1996).Google Scholar
20. Joyce, J.J., et al. , J. Electron. Spectros. & Rel. Phenom. 49, 31 (1989).Google Scholar
21. Yeh, J.J. and Lindau, I., Atomic Data and Nuclear Data Tables, 32, 1 (1985).10.1016/0092-640X(85)90016-6Google Scholar
22. Butterfield, M.T., et al. , Surface Science 571, 74 (2004).Google Scholar
23. Almeida, T., et al. , Surface Science, 287/288, 141 (1993).10.1016/0039-6028(93)90758-CGoogle Scholar
24. Huda, M.N. and Ray, A.K., Physica B, 352, 5 (2004).10.1016/j.physb.2004.06.010Google Scholar
25. Huda, M.N. and Ray, A.K., Phys. Rev. B 72, 85101 (2005).Google Scholar
26. Prodan, I.D., et al. J. Chem Phys. 123, 14703 (2005).Google Scholar
27. Penicaud, N., J. Phys.: Condens. Matter 12, 5819 (2000).Google Scholar
28. Shick, et al. , Europhys. Lett. 69, 588 (2005).Google Scholar
29. Niklasson, et al. , Phys. Rev. B 67, 235105 (2003).Google Scholar
30. Soderlind, P., Landa, A., and Sadigh, B., Phys. Rev. B 66, 205109 (2002).Google Scholar
31. Bouchet, J., et al. , J. Phys. - Cond. Matter, 12, 1723 (2000).Google Scholar
32. Savrasov, S.Y., Kotliar, G. and Abrahams, E., Nature 410, 793 (2001).Google Scholar
33. Kotliar, G., private communication (2005).Google Scholar