Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T22:40:31.724Z Has data issue: false hasContentIssue false

Localization of 5f electrons and phase transitions in americium

Published online by Cambridge University Press:  26 February 2011

Michel Pénicaud*
Affiliation:
michel.penicaud@cea.fr, Commissariat a l'energie atomique, DAM - Ile de France, B.P. 12, Bruyeres-le-Chatel, N/A, 91680, France, +33 1 69 26 52 35, +33 1 69 26 70 77
Get access

Abstract

Density-functional electronic calculations have been used to investigate the high-pressure behavior of americium.The phase transitions calculated agree with the recent sequence obtained experimentally under pressure: double hexagonal close packed → face centered cubic → face centered orthorhombic, primitive orthorhombic. In the first three phases the 5f electrons are found localized, only in the fourth phase (Am IV) the 5f electrons are found delocalized. The localization of the 5f electrons is modelled by an anti-ferromagnetic configuration which has a lower energy than the ferromagnetic ones. In this study the complex crystal structures have been fully relaxed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Skiver, H. L., Andersen, O. K. and Johansson, B., Phys. Rev. Lett. 41, 42 (1978).Google Scholar
2. Söderlind, P., Ahuja, R., Eriksson, O., Johansson, B. and Wills, J. M., Phys. Rev. B 61, 8119 (2000).Google Scholar
3. Eriksson, O., Brooks, M. S. S. and Johansson, B., J. Less Common Met. 158, 207 (1990).Google Scholar
4. Pénicaud, M., J. Phys.: Condens. Matter 9, 6341 (1997).Google Scholar
5. Pénicaud, M., J. Phys.: Condens. Matter 14, 3575 (2002).Google Scholar
6. Solov'ev, I. V., Likhtenshtein, A. I. and Gubanov, V. A., Sov. Phys. Solid State 33, 572 (1991).Google Scholar
7. Petit, L., Svane, A., Temmerman, W. M. and Szotek, Z., Solid State Commun. 116, 379 (2000).Google Scholar
8. Niklasson, A. M. N., Wills, J. M., Katsnelson, M. I., Abrikosov, I. A., Eriksson, O. and Johansson, B., Phys. Rev. B 67, 235105 (2003).Google Scholar
9. Wallace, D. C., Phys. Rev. B 58, 15433 (1998).Google Scholar
10. Wang, Y. and Sun, Y., J. Phys.: Condens. Matter 12, L311 (2000).Google Scholar
11. Söderlind, P., Europhys. Lett. 55, 525 (2001).Google Scholar
12. Fournier, J. M. and Troć, R., Handbook on the Physics and Chemistry of the Actinides, ed. Freeman, A. J. and Lander, G. H. (North-Holland, 1985) vol. 2.Google Scholar
13. Heathman, S., Haire, R. G., Le Bihan, T., Lindbaum, A., Litfin, K., Méresse, Y. and Libotte, H., Phys. Rev Lett. 85, 2961 (2000).Google Scholar
Lindbaum, A., Heathman, S., Litfin, K., Méresse, Y., GHaire, R, Le Bihan, T. and Libotte, H., Phys. Rev. B 63, 214101 (2001).Google Scholar
14. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. and Luitz, J., WIEN2k, ed. Schwarz, K. (Vienna University of Technology, 2001).Google Scholar
15. Perdew, J. P., Burke, S. and Ernzerhof, M., Phys. Rev. Lett 77, 3865 (1996).Google Scholar
16. Sjöstedt, E., Nordström, L. and Singh, D. J., Solid State Commun. 114, 15 (2000).Google Scholar
17. Kuneš, J., Novák, P., Schmid, R., Blaha, P. and Schwarz, K., Phys. Rev. B 64, 153102 (2001).Google Scholar
18. Chadi, D. J. and Cohen, M. L., Phys. Rev. B 8, 5747 (1973).Google Scholar
19. Wyckoff, R. W. G., Crystal Structures (Wiley, 1963) vol. 1.Google Scholar
20. Söderlind, P. and Sadigh, B., Phys. Rev. Lett. 92, 185702 (2004).Google Scholar
21. Ziman, J. M., Principle of the Theory of Solids (Cambridge University Press, 1972) p. 144.Google Scholar
22. Naegele, J. R., Manes, L., Spirlet, J. C. and Müller, W., Phys. Rev. Lett 52, 1834 (1984).Google Scholar
23. Mårtensson, N., Johansson, B. and Naegele, J. R., Phys. Rev. B 35, 1437 (1987).Google Scholar
24. Arko, A. J., Joyce, J. J., Morales, L., Wills, J., Lashley, J., Wastin, F. and Rebizant, J., Phys. Rev. B 62, 1773 (2000).Google Scholar
25. Tobin, J. G., Chung, B. W., Schulze, R. K., Terry, J., Farr, J. D., Shuh, D. K., Heinzelman, K., Rotenberg, E., Waddill, G. D. and van der Laan, G., Phys. Rev. B 68, 155109 (2003).Google Scholar
26. Pénicaud, M., J. Phys.: Condens. Matter 12, 5819 (2000).Google Scholar
27. Lashley, J. C., Singleton, J., Migliori, A., Betts, J. B., Fisher, R. A., Smith, J. L. and McQueeney, R. J., Phys. Rev Lett. 91, 205901 (2003).Google Scholar
28. Pénicaud, M., J. Phys.: Condens. Matter 17, 257(2005).Google Scholar
29. Söderlind, P. and Landa, A., Phys. Rev. B 72, 024109 (2005).Google Scholar
30. Heathman, S., Haire, R. G., Le Bihan, T., Lindbaum, A., Idiri, M., Normile, P., Li, S., Ahuja, R., Johansson, B. and Lander, G. H., Science 309, 110 (2005).Google Scholar