Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T10:33:02.281Z Has data issue: false hasContentIssue false

Local Optical Probes of Microwave Dielectric Dispersion in Ferroelectric Thin Films

Published online by Cambridge University Press:  10 February 2011

Charles Hubert
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
Jeremy Levy
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
E. J. Cukauskas
Affiliation:
Naval Research Laboratory, Electronics Science and Technology Division Washington, DC 20375
Steven W. Kirchoefer
Affiliation:
Naval Research Laboratory, Electronics Science and Technology Division Washington, DC 20375
Jeffrey M. Pond
Affiliation:
Naval Research Laboratory, Electronics Science and Technology Division Washington, DC 20375
William J. DeSisto
Affiliation:
Naval Research Laboratory, Electronics Science and Technology Division Washington, DC 20375
Get access

Abstract

The soft-mode contribution to the dielectric response of Ba0.5Sr0.5TiO3 ferroelectric thin films is measured locally at microwave frequencies using time-resolved confocal scanning optical microscopy. Optical measurements performed on an ensemble of nanometer-scale regions show a well-defined phase shift between the paraelectric and ferroelectric response at 2-4 GHz. Application of a static electric field produces large local variations in the phase of the ferroelectric response. These variations are attributed to the growth of a-axis ferroelectric nanodomains whose size-dependent relaxation frequencies lead to strong dielectric dispersion at mesoscopic scales. The in-plane paraelectric response is believed to arise from the surrounding c-axis matrix and non-polar regions, and shows negligible dispersion. These results provide a direct view of the soft-mode mechanisms of microwave dielectric loss in ferroelectric thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lines, M. E. and Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).Google Scholar
2 Hoerman, B. H., Ford, G. M., Kaufmann, L. D., and Wessels, Y. B. W., Appl. Phys. Lett. 73, 2248–50 (1998).10.1063/1.121691Google Scholar
3 Hubert, C., Levy, J., Carter, A. C., Chang, W., Kiechoefer, S. W., Horwitz, J. S., and Chrisey, D. B., Appl. Phys. Lett. 71, 3353–5 (1997).10.1063/1.120335Google Scholar
4 Hubert, C. and Levy, J., Appl. Phys. Lett. 73, 3229–31(1998).10.1063/1.122727Google Scholar
5 Cukauskas, E. J., Kirchoefer, S. W., DeSisto, W. J., and Pond, J. M., Appl. Phys. Lett. 74, 4034 (1999).10.1063/1.123252Google Scholar
6 Hubert, C. and Levy, J., Rev. Sci. Instr. 70, 3684–7 (1999).10.1063/1.1149978Google Scholar
7 Gurevich, V. L. and Tagantsev, A. K., Adv. Phys. 40, 719–67 (1991).10.1080/00018739100101552Google Scholar
8 McNeal, M. P., Sei-Joo, J., and Newnham, R. E., J. Appl. Phys. 83, 3288–97 (1998).10.1063/1.367097Google Scholar
9 Sawada, A. and Horioka, M., Jpn. J. Appl. Phys. Suppl. 31, 390–2 (1985).10.7567/JJAPS.24S2.390Google Scholar
10 Arlt, G., Bottger, U., and Witte, S., Annalen der Physik 3, 578–88 (1994);10.1002/andp.19945060703Google Scholar
Arlt, G., Bottger, U., and Witte, S., Appl. Phys. Lett. 63, 602–4 (1993).10.1063/1.109962Google Scholar