Skip to main content Accessibility help
×
Home

Lithium Intercalation in Perovskite and Hexagonal Tungsten Bronze Derivatives

  • C. Delmas (a1), A. Nadiri (a1), G. Le Flem (a1), S.H. Chang (a1), J.P. Chaminade (a1) and M. Menetrier (a1)...

Abstract

Lithium has been intercalated chemically and electrochemically in LnNb3O9 (Ln = La, Nd) perovskite-type phases and LiW3O9F which can be considered as a hexagonal tungsten bronze derivative.

The crystallographic formula of the LnNb3O9 starting material is □3/2 (Ln□1/2 )Nb3O9. In both systems, solid solutions are observed in the fir part of the intercalation reaction. While almost all perovskite cavities are filled in the neodymium phases, the higher ionic character of the La-O bonds prevents practically the Li intercalation in the □' sites.

In the LiW3O9F phase two lithium atoms can be electrochemically intercalated via a single phase mechanism. The reaction is completely reversible. For higher amounts of intercalation (x > 3), irreversible structural modifications occur.

In both systems the unit cell parameter variation is negligible during intercalation. This behavior results from the blocking up of the framework by Ln3+ ions in LnNb3O9 phases or by the stacking of the three octahedra triangular arrangement in the hexagonal tungsten bronze structure.

Copyright

References

Hide All
[1] Iyer, P.N. and Smith, A.J., Acta Crystallogr. 23, 740 (1967).
[2] Trounov, V.K., Kovba, L.N. and Afonckii, N.S., Vestik. Moskolsskovo Yniversiteta 1, 55 (1968).
[3] Moutou, J.M., Vlasse, M., Cervera-Marzal, M., Chaminade, J.P. and Pouchard, M., J. Sol. State Chem. 51, 190 (1984).
[4] Chaminade, J.P., Moutou, J.M., Villeneuve, G., Couzi, M., Pouchard, M. and Hagenmuller, P., J. Sol. State Chem. 65, 27 (1986).
[5] Chevalier, R. and Gasperin, M., Acad, C.R.. Sc. C267, 481 (1968).
[6] Deschanvres, A., Leparmentier, L. and Raveau, B., Bull. Soc. Chim. Fr., 3460 (1971).
[7] Mendiboure, A. and Delmas, C., Computer and Chemistry 11(3), 153 (1987).
[8] Magneli, A., Acta Chm. Scand. 7, 315 (1953).
[9] Cheng, K.H. and Whittingham, M.S., Solid State Ionics 1, 151 (1980.
[10] Wiseman, P.J. and Dickens, P.G., J. Sol. State Chem. 17, 91 (1976).
[11] Murphy, D.W., Greenblatt, M., Cava, R.J. and Zahurak, S.M., Solid State Ionics 5, 327 (1981).
[12] Cava, R.J., Santoro, A., Murphy, D.W., Zahurak, S. and Roth, R.S., J. Sol. State Chem. 42, 251 (1982).
[13] Cava, R.J., Santoro, A., Murphy, D.W., Zahurak, S. and Roth, R.S., Solid State Ionics 5, 323 (1981).
[14] Cheng, K.H., Jacobson, A.J. and Whittingham, M.S., Solid State Ionics 5, 355 (1981).
[15] Gerand, B., Desseine, J., Ndata, P. and Figlarz, M., Procceding of the 2nd European Conf. On Solid State Chem., (Metselar, R., Heijligers, J.M. and Schoonman, J. Eds), Studies in Inorganic Chemistry 3, 457 (1983).
[16] Gerand, B., Thesis, University of Picardie (France), 1984.
[17] Gerand, B., Nowogroki, G. and Figlarz, M., J. Sol. State Chem. 38, 312 (1981).
[18] Banks, E. and Goldstein, A., Inorg. Chem. 7, 966 (1968).

Lithium Intercalation in Perovskite and Hexagonal Tungsten Bronze Derivatives

  • C. Delmas (a1), A. Nadiri (a1), G. Le Flem (a1), S.H. Chang (a1), J.P. Chaminade (a1) and M. Menetrier (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed