Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T12:38:41.026Z Has data issue: false hasContentIssue false

Liquid Delivery of Low Vapor Pressure MOCVD Precursors

Published online by Cambridge University Press:  15 February 2011

R. A. Gardiner
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Dr., Danbury, CT 06810
P. C. Van buskirk
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Dr., Danbury, CT 06810
P. S. Kirlin
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Dr., Danbury, CT 06810
Get access

Abstract

A significant limitation in MOCVD processing of advanced materials is the ability to deliver low volatility precursors, in a repeatable fashion, to the deposition reactor. Apparatus for delivering low volatility precursors in gaseous form, wherein a precursor source liquid is flash vaporized at elevated temperature has been developed. Stable, reproducible delivery of liquid precursors for TiN and Ta2O5 has been demonstrated. For multicomponent ceramic material systems simultaneous delivery of multiple cation species via a single source liquid has been achieved. The effect of flash vaporization on precursors for PZT was investigated. Pb, Zr and Ti precursors were dissolved in an organic medium with a defined cation ratio. The source solution was vaporized, the precursors transported as vapor then collected and analyzed by 1H and 13C nmr. No decomposition of the precursors was observed post vaporization and source solution stoichiometry was maintained in the collected material. The use of this flash vaporization technique has already been particularly successful for MOCVD of BaTiO3, MgAl2O4, YBa2Cu3O7−x, YSZ, LaSrCoO3 and Cu metal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Zhang, J., Gardiner, R. A. and Kirlin, P. S., Mater. Res. Soc. Proc. 275, San Francisco, CA, 1992, pp 419424.Google Scholar
2 Sugimoto, T., Kubota, N., Shiohara, Y. and Tanaka, S., Appl. Phys. Lett 60 (11), 1387 (1992).CrossRefGoogle Scholar
3 Funakobo, H., Inagaki, Y., Sinosaki, K. and Miautani, N., j. Chem. Vap. Dep. 1, 73 (1992).Google Scholar
4 Koyama, K., Sakuma, T., Yamamichi, S., Watanabe, H., Aoki, H., Ohya, S., Miyasaka, Y., Kikkawa, T., IEDM Technical Digest, 823826 (1991).Google Scholar
5 Xu, Y., Chen, C. J., Xu, R. and Mackenzie, J. D., Phys. Rev. B 44 (1), 35 (1991).Google Scholar
6 lijima, K., Takayama, R., Tomita, Y., and Ueda, I., J. Appl. Phys., 60 (8), 2914 (1986).Google Scholar
7 Tuttle, B. A., Voight, J. A., Goodnow, D. C., amppa, D. L., Headley, T. J., Eatough, M. O., Zender, G., Nasby, R. D., and Rodgers, S. M., J. Am. Ceram. Soc. 76 (6), 1537 (1993).CrossRefGoogle Scholar
8 Okada, M., Tominaga, K., Araki, T., Katayama, S., and Sakashita, Y., J. J. Appl. Phys. 29 (4), 718 (1990).Google Scholar
9 Treichel, H., Mitwalsky, A., Sandier, N. P., Tribula, D., Kern, W., and Lane, A. P., Adv. Mat. Opt. Electr. 1, 299 (1992).Google Scholar
10 Yoshikawa, N. and Kikuchi, A., J. Cryst. Growth 130, 578 (1993)Google Scholar
11 Kirlin, Peter S., Binder, Robin L. and Gardiner, Robin A., U.S. Patent No. 5,204,314 (20 April 1993).Google Scholar
12 VanBuskirk, P. C., Gardiner, R. A., Kirlin, P. S. and Nutt, S., J. Mater. Res. 7 (3), 542 (1992).Google Scholar
13 Stauf, G. T., VanBuskirk, P. C., Kirlin, P. S., Kosar, W. P. and Nutt, S., presented at the 1993 MRS Spring Meeting, San Francisco, CA, 1993 (unpublished).Google Scholar
14 Zhang, J., Gardiner, R. A., Kirlin, P. S., Boerstler, R., and Steinbeck, J., J Appl. Phys. Lett., 61, 2884 (1992).Google Scholar
15 Zhang, J., Cui, Guang-Ji, Gordon, D., VanBuskirk, P. C., and Steinbeck, J.,, presented at the 1993 MRS Spring Meeting, San Francisco, CA, 1993 (unpublished).Google Scholar
16 Petersen, G. A., Omstead, T. R., Smith, P. M. and Gonzalez, M. F., presented at the 1993 Electrochemical Society Meeting, Honolulu, Hawaii, May 1993.Google Scholar