Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T18:14:03.014Z Has data issue: false hasContentIssue false

Line-Width Dependence of Void Formation in Ti-Salicided BF2-Doped Polysilicon Lines

Published online by Cambridge University Press:  10 February 2011

H. N. Chua
Affiliation:
Centre for Integrated Circuit Failure Analysis & Reliability, Department of Electrical Engineering, National University of singapore
K. L. Pey
Affiliation:
Centre for Integrated Circuit Failure Analysis & Reliability, Department of Electrical Engineering, National University of singapore
S. Y. Siah
Affiliation:
R&D Department, chartered semiconductor Manufacturing Ltd
E. H. Lim
Affiliation:
R&D Department, chartered semiconductor Manufacturing Ltd
C. S. Ho
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore
Get access

Abstract

We report the first observation of voids in sub-quarter micron Ti-salicided BF2-dopedpolycrystalline silicon (polySi) lines. Some of the voids, with sizes ranging from 10 to 100nm, can be clearly seen on the surface of the TiSi2 film whereas others are situated below the TiSi2 surface. The void density and size increase with decreasing polySi line-width, especially for line-widths < 0.24 µm. The voiding phenomenon was also observed to be moresevere for TiSi2 fabricated with enhanced salicidation techniques such as pre-amorphization-implant(PAl) and implant-through-metal (ITM) as compared to the conventional salicidationmethod without amorphization. The origin of the voids is found to coincide with the fluorinepeak at the TiSi2/polySi interface in the SIMS depth-concentration profiles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liauh, H.R., Chen, M.C., Chen, J.F., Lur, W. and Chua, C.H., Nuclear Instruments and Methods in Physics Research, B74, p. 134 (1993).10.1016/0168-583X(93)95030-9Google Scholar
2. Lur, W. and Chen, L.J., J. Appl. Phys., 66, p. 3604 (1989).10.1063/1.344067Google Scholar
3. Chen, W.J. and Chen, L.J., J. Appl. Phys., 71, p. 653 (1992).10.1063/1.351350Google Scholar
4. Chen, L.J., Cheng, S.L., and Tsui, B.Y., Nuclear Instruments and Methods in Physics Research, B121, p. 231 (1997).10.1016/S0168-583X(96)00582-4Google Scholar
5. Nieh, C.W. and Chen, L.J., J. Appl. Phys., 60, p. 3114 (1986).10.1063/1.337722Google Scholar
6. L Chen, J., Yew, J.Y., Cheng, S.L., Chen, K.M., Nakamura, K., and Tsui, B.Y., Materials Research Society Symposium Proceedings, vol. 427, p. 499 (1996).10.1557/PROC-427-499Google Scholar
7. Chen, T.P., Lei, T.F., Chang, C.Y., Hsieh, W.Y., and Chen, L.J., J Electrochem. Soc., vol. 142, 6, p. 2000 (1995).10.1149/1.2044231Google Scholar
8. Chu, C.H., Yang, J.J., and Chen, L.J., Nucl. Instrum. Methods Phys. Res. B, vol. 74, p. 138 (1993).10.1016/0168-583X(93)95031-YGoogle Scholar
9. Yang, J.J. and Chen, L.J., Nucl. Instrum. Methods Phys. Res. B, vol. 121, p. 2991 (1997).Google Scholar
10. Sung, J.J. and Lu, C.-Y., Nucl. Instrum. Methods Phys. Res. B,, ED–37, p. 2312 (1990).Google Scholar
11. Tseng, H.-H., Orlowski, M., Tobin, P.J., and Hance, R.L., IEEE Trans. Electron Device Lett., EDL–13, p. 14 (1992).10.1109/55.144936Google Scholar
12. Tsai, M. Y., Day, D.S., Streetman, B.G., Williams, P., and Evans, C.A., J. Appl. Phys., 50, p. 188 (1979).10.1063/1.325689Google Scholar
13. Jeng, S.-P., Ma, T.-P., Canteri, R., Anderle, M., and Rubloff, G.W., Appl. Phys. Lett., 61, p. 1310 (1992).10.1063/1.107575Google Scholar
14. Wang, L.Z., Luo, M.S- C., Tseng, H.-H., and Ajuria, S.A., J. Electrochem. Soc., vol. 144, 11, L298 (1997).10.1149/1.1838075Google Scholar
15. Hasumuna, M., Kaneko, H., Sawabe, A., Kawanoue, T., Kohanawa, Y., Komatsu, S., and Miyauchi, M., in Technical digest of 1989 Int. Electron Devices Meeting, IEEE, New York, p. 677 (1989).Google Scholar
16. Okabayashi, H., Materials Science & Engineering, RI 1, 5, p. 192 (1993).Google Scholar
17. Aziz, M.J., Defect and Diffusion Forum, 153–155, p1 (1998).Google Scholar
18. Mitha, S., Theiss, S.D., Aziz, M.J., Schiferl, D., and Poker, D.B., Materials Research Society Symposia Proceedings, 325, p. 189 (1994).10.1557/PROC-325-189Google Scholar
19. Nygren, E., Aziz, M.J., Turnbull, D., Hays, J.F., Poate, J.M., Jacobson, D.C., and Hull, R., Materials Research Society Symposia Proceedings, 36, p. 77 (1985).10.1557/PROC-36-77Google Scholar
20. Nygren, E., Aziz, M.J., Turnbull, D., Poate, J.M., Jacobson, D.C., and Hull, R., Appl. Phys. Lett., 47, p. 105 (1985).10.1063/1.96283Google Scholar
21. Aziz, M.J., Nygren, E., Christie, W.H., White, C.W., and Turnbull, D., Materials Research Society Symposia Proceedings, 36, p. 101 (1985).10.1557/PROC-36-101Google Scholar
22. Okabayashi, H., Tanikawa, A., Mori, H., and Fujita, H., in Li, C.-Y., Totta, P., and Ho, P. (eds.), Stress-Induced Phenomena in Metallization, American Vac. Soc. Series 13, American Institute of Physics, New York, p. 174 (1992).Google Scholar
23. Tanikawa, A., Okabayashi, H., Mori, H., and Fujita, H., in Pro. 1990 Int. Reliability Physics Symp., IEEE, New York, p. 209.Google Scholar