Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T05:31:23.964Z Has data issue: false hasContentIssue false

Line Shape in Resonance Raman Scattering from Silicon Quantum Dots

Published online by Cambridge University Press:  10 February 2011

R.K. Soni
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR-00931, USA
L.F. Fonseca
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR-00931, USA
O. Resto
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR-00931, USA
S.Z. Weisz
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR-00931, USA
S. Tripathy
Affiliation:
Department of Physics, Indian Institute of Technology, New Delhi-110016, INDIA
Get access

Abstract

We have carried out a resonance Raman study of line-shape in silicon quantum dots synthesized on a quartz substrate by co-sputtering bulk Si and Si02. Optical transmission measurements are used to evaluate dot size distribution. The size distribution shows peaks around 1.0 and 1.4 nm. The Si dots exhibit photoluminescence in the visible region, which shifts to higher energy with decreasing size. The size dependence of Raman scattering shows phonon softening and increasing asymmetrical broadening for small dots (< 2nm). The observed spectra are compared with calculations considering electron-hole interactions at a quasi-direct gap of a spherical quantum dot.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsybeskov, L., MRS Bulletin, April 1998, 33.10.1557/S0883769400030244Google Scholar
2. Wang, L.W. and Zunger, A., J. Phys. Chem. 98, 2158 (1994).10.1021/j100059a032Google Scholar
3. Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11024 (1993).10.1103/PhysRevB.48.11024Google Scholar
4. Hill, Nicola A. and Whaley, K. Birgitta, Phys. Rev. Lett. 75, 1130 (1995).10.1103/PhysRevLett.75.1130Google Scholar
5. Rosenbauer, M., Finkbeiner, S., Bustarret, E., Weber, J., and Stutzmann, M., Phys. Rev. B 51, 10539 (1995).10.1103/PhysRevB.51.10539Google Scholar
6. Fuchs, H.D., Stutuzmann, M., Brandt, M.S., Rousenbauer, M., Weber, J., Breitschwerdt, A., Deak, P., and Cardona, M., Phys. Rev. B 48, 8172 (1993).10.1103/PhysRevB.48.8172Google Scholar
7. Kanazawa, Y., Hayashi, S., and Yamamoto, K., J. Phys. Condens. Matter 8, 4823 (1996).10.1088/0953-8984/8/26/014Google Scholar
8. Fujii, M., Kanazawa, Y., Hayashi, S. and Yamamoto, K., Phys. Rev. B 54, R8373 (1996).10.1103/PhysRevB.54.R8373Google Scholar
9. Chamberline, M.P., Trallero-Giner, C., and Cardona, M., Phys. Rev. B 51, 1680 (1995).10.1103/PhysRevB.51.1680Google Scholar
10. Menendez, E., Trallero-Giner, C., and Cardona, M., Phys. Status. Solidi, B 199, 81 (1997).10.1002/1521-3951(199701)199:1<81::AID-PSSB81>3.0.CO;2-W3.0.CO;2-W>Google Scholar
11. Trallero-Giner, C., Debemardi, A., Cardona, M., Menendez-Proupin, E. and Ekimov, A.I, Phys. Rev. B 57, 4664 (1998).10.1103/PhysRevB.57.4664Google Scholar
12. Delerue, C., Lannoo, M., and Allan, G., J. Luminescence. 57, 249 (1993).10.1016/0022-2313(93)90143-BGoogle Scholar
13. Fonseca, L.F., Resto, C., Gupta, S., Katiyar, R.S., Weisz, S.Z., Goldstein, Y., Many, A., and Shappir, J., in Proc. of the 24 th International Conference on Physics of Semiconductor, Israel 1998 World Scientific, in press.Google Scholar
14. Delerue, C., Allan, G., Lannoo, M., J. of Lumines. 80, 65 (1999).10.1016/S0022-2313(98)00071-4Google Scholar