Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T16:20:10.379Z Has data issue: false hasContentIssue false

Light-Induced Degradation Effects in a-Si:H Observed by Raman Scattering Measurements

Published online by Cambridge University Press:  10 February 2011

P. Stradins
Affiliation:
Thin Film Silicon Solar Cells Super Laboratory, Electrotechnical Laboratory, Tsukuba, Ibaraki 305-8568, Japan, stradins@etl.go.jp
M. Kondo
Affiliation:
Thin Film Silicon Solar Cells Super Laboratory, Electrotechnical Laboratory, Tsukuba, Ibaraki 305-8568, Japan
N. Hata
Affiliation:
Thin Film Silicon Solar Cells Super Laboratory, Electrotechnical Laboratory, Tsukuba, Ibaraki 305-8568, Japan
A. Matsuda
Affiliation:
Thin Film Silicon Solar Cells Super Laboratory, Electrotechnical Laboratory, Tsukuba, Ibaraki 305-8568, Japan
Get access

Abstract

We have attempted to observe changes in the Raman scattering spectrum of a-Si:H due to light exposure. We do not find any detectable shift of the position or change in the width of the TO phonon peak. We find, however, other unexpected degradation phenomena in the Raman spectrum of a-Si:H samples which are attributed to light induced changes in the high energy tail of room temperature luminescence. Raman scattering has a relatively large (10-20% of TO peak height) broad background which extends to 2000cm−1 in the Stokes region and tails into the anti-Stokes region. Multiple phonon processes, geminate radiative recombination and surface oxide contributions are considered. Degradation phenomena and the broad background signal are observed in a-Si:H deposited on different substrates as well as in free-standing films. Degradation processes in bare fused quartz substrates are also investigated. Small structural changes surrounding the light-induced defects are proposed and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fritzsche, H., Mat. Res. Soc. Symp. Proc. 467, 19 (1997).Google Scholar
2 Stradins, P. and Fritzsche, H., ibid., p.85.Google Scholar
3 Hata, N., Kamei, T., Okamoto, H., Matsuda, A., ibid., p.61.Google Scholar
4 Hata, N., Stradins, P., Matsuda, A., presented in Jap. Appl. Phys. Soc. 1998 Spring Meeting.Google Scholar
5 Darwich, D., Cabarroccas, P. Rocca i, Vallon, S., Ossikovski, R., Morin, P., Zellama, K., Phil.Mag. B72, 363 (1995).Google Scholar
6 Zhao, Y., Zhang, D., Kong, G., Pan, G., Liao, X., Phys.Rev.Lett. 74, 558 (1995).Google Scholar
7 Gotoh, T., Nonomura, S., Nishio, M., Nitta, S., Kondo, M., Matsuda, A., Appl. Phys. Lett. (1998) (to be published).Google Scholar
8 Kamei, T., Hata, N., Matsuda, A., Appl. Phys. Lett. 68, Nr.17, 2380 (1996).Google Scholar
9 Meyerson, B.S., Himpsel, F.J., Uram, K.J., Appl.Phys.Lett. 57 (10), 1034 (1990).Google Scholar
10 Lannin, J. S. in Semiconductors and Semimetals vol. 21B, ed. by Pankove, J.I. (Acad.Press, 1984) p.159.Google Scholar
11 Street, R., Hydrogenated Amorphous Silicon (Cambridge Univ. Press, 1991) p. 40.Google Scholar
12 Berntsen, A.J.M., Boogard, M.J. Van den, Sark, W.G.J.H.M. Van, Weg, W. Van Der, Mat. Res. Soc. Symp. Proc. 258, 275 (1992).Google Scholar
13 Hishikawa, Y., J.Appl.Phys. 62(8), 3150 (1987).Google Scholar
14 Wilson, B.A., Phys.Rev. B23 (6), 3102 (1981).Google Scholar
15 Campbell, I.H., Fauchet, P.M., Lyon, S.A., Nemanich, R.J., Phys.Rev B41, 9871 (1990).Google Scholar
16 Branz, H.M., Solid State Communications, 105, 387 (1998).Google Scholar