Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-26T23:36:05.233Z Has data issue: false hasContentIssue false

Light Scattering from Pulsed Laser Deposited BaBi4Ti4O15 Thin Films

Published online by Cambridge University Press:  10 February 2011

R.K. Soni
Affiliation:
Physics Department, University of Puerto Rico, San Juan, Puerto Rico, PR 00931, USA
Anju Dixit
Affiliation:
Physics Department, University of Puerto Rico, San Juan, Puerto Rico, PR 00931, USA
R. S. Katiyar
Affiliation:
Physics Department, University of Puerto Rico, San Juan, Puerto Rico, PR 00931, USA
A. Pignolet
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
K.M. Satyalakshmi
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
Get access

Abstract

Light scattering investigations are carried out on BaBi4Ti4O15 (BBiT) which is a member of the Bi-layer structure ferroelectric oxide with n = 4. The BBiT thin films, thickness ∼ 300 nm, were grown on epitaxial conducting LaNiO3 electrodes on epitaxial buffer layers on (100) silicon by pulsed laser deposition. Micro-Raman measurements performed on these films reveal a sharp low-frequency mode at 51 cm−1 along with broad highfrequeficy modes corresponding to other lattice vibrations including TiO6 octahedra. No temperature dependence of the low frequency mode is seen while a weak dependence of the broad high frequency vibrations are observed in the mixed oriented regions. Raman polarization carried out at room temperature indicates that the prominent modes have Alg and Eg symmetries in the BaBi4Ti4O15 thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Subarao, E.C., J. Phys. Chem. Solids 23, 665 (1962).Google Scholar
2 Kojima, S., Imaizumi, R, Hamazaki, S. and Takashige, M., Jap J. of Appl. Phys. 33, 5559 (1994).Google Scholar
3 Subalakshmi, K.M., Alexe, M., Pignolet, A., Zakharov, N.D., Harnagea, C., Senz, S. and Hesse, D., Appl. Phys. Lett. 74, 603 (1999).Google Scholar
4 Harnagea, C., Pignolet, A., Alex, M., Subalashmi, K.M., Hesse, D. and Gosele, U., Jap. J.Appl. Phys. 38, L1255 (1999).Google Scholar
5 Ramesh, R., Inam, A., Chan, W.K., Wilkens, B., Myens, K., Remschning, K., Hart, D.L., and Tarascon, J.M., Science 252, 944 (1991).Google Scholar
6 Kim, S.K., Miyayama, M., and Yanagida, H., J. Ceram. Soc. Jan. 102, 722 (1994).Google Scholar
7 Tabata, H., Hamada, M., and Kawai, T., Mat. Res. Soc. Symp Proc. 401, 73 (1996).Google Scholar
8 Graves, P.R., Hua, G., Myhra, S., and Thompson, J.G., J. of Solid State Chemistry 114, 112(1995).Google Scholar
9 Moret, M.P., Zallen, R., Newnham, R.E., Joshi, P.C., and Desu, S.B., Phys. Rev. B 57, 5715 (1998).Google Scholar
10 Popovic, Z.V., Thomsen, C., Cardona, M., Liu, R., Stanisic, G., Kremer, R., and Konig, W., Sold. State Commun. 66, 965 (1988).Google Scholar
11 Liu, R., Proc. of the American Physical Society Meeting 1997.Google Scholar